We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce and study a category of representations of the Borel algebra associated with a quantum loop algebra of non-twisted type. We construct fundamental representations for this category as a limit of the Kirillov–Reshetikhin modules over the quantum loop algebra and establish explicit formulas for their characters. We prove that general simple modules in this category are classified by n-tuples of rational functions in one variable which are regular and non-zero at the origin but may have a zero or a pole at infinity.
Twisted K-theory classes over compact Lie groups can be realized as families of Fredholm operators using the representation theory of loop groups. In this paper we show how to deform the Fredholm family in the sense of quantum groups. The family of Dirac-type operators is parametrized by vectors in the adjoint module for a quantum affine algebra and transforms covariantly under a central extension of the algebra.
We prove a version of Kontsevich’s formality theorem for two subspaces (branes) of a vector space X. The result implies, in particular, that the Kontsevich deformation quantizations of S(X*) and ∧(X) associated with a quadratic Poisson structure are Koszul dual. This answers an open question in Shoikhet’s recent paper on Koszul duality in deformation quantization.
We consider the finite W-algebra U(𝔤,e) associated to a nilpotent element e∈𝔤 in a simple complex Lie algebra 𝔤 of exceptional type. Using presentations obtained through an algorithm based on the PBW-theorem for U(𝔤,e), we verify a conjecture of Premet, that U(𝔤,e) always has a 1-dimensional representation when 𝔤 is of type G2, F4, E6 or E7. Thanks to a theorem of Premet, this allows one to deduce the existence of minimal dimension representations of reduced enveloping algebras of modular Lie algebras of the above types. In addition, a theorem of Losev allows us to deduce that there exists a completely prime primitive ideal in U(𝔤)whose associated variety is the coadjoint orbit corresponding to e.
We identify the Poisson boundary of the dual of the universal compact quantum group Au(F) with a measurable field of ITPFI (infinite tensor product of finite type I) factors.
We describe a general setting for the definition of semi-infinite cohomology of finite-dimensional graded algebras, and provide an interpretation of such cohomology in terms of derived categories. We apply this interpretation to compute semi-infinite cohomology of some modules over the small quantum group at a root of unity, generalizing an earlier result of Arkhipov (posed as a conjecture by B. Feigin).
In this paper we give a re-normalization of the Reshetikhin–Turaev quantum invariants of links, using modified quantum dimensions. In the case of simple Lie algebras these modified quantum dimensions are proportional to the usual quantum dimensions. More interestingly, we give two examples where the usual quantum dimensions vanish but the modified quantum dimensions are non-zero and lead to non-trivial link invariants. The first of these examples is a class of invariants arising from Lie superalgebras previously defined by the first two authors. These link invariants are multivariable and generalize the multivariable Alexander polynomial. The second example is a hierarchy of link invariants arising from nilpotent representations of quantized at a root of unity. These invariants contain Kashaev’s quantum dilogarithm invariants of knots.
We give an interpretation of the energy function and classically restricted one-dimensional sums associated to tensor products of level-zero fundamental representations of quantum affine algebras in terms of Lakshmibai–Seshadri paths of level-zero shape.
We show that a quantum Verma-type module for a quantum group associated to an affine Kac-Moody algebra is characterized by its subspace of finite-dimensional weight spaces. In order to do this we prove an explicit equivalence of categories between a certain category containing the quantum Verma modules and a category of modules for a subalgebra of the quantum group for which the finite part of the Verma module is itself a module.
In the framework of quantum probability, we present a simple geometrical mechanism which gives rise to binomial distributions, Gaussian distributions, Poisson distributions, and their interrelation. More specifically, by virtue of coherent states and a toy analogue of the Bargmann transform, we calculate the probability distributions of the position observable and the Hamiltonian arising in the representation of the classic group SU(2). This representation may be viewed as a constrained harmonic oscillator with a two-dimensional sphere as the phase space. It turns out that both the position observable and the Hamiltonian have binomial distributions, but with different asymptotic behaviours: with large radius and high spin limit, the former tends to the Gaussian while the latter tends to the Poisson.