We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce PyCFTBoot, a wrapper designed to reduce the barrier to entry in conformal bootstrap calculations that require semidefinite programming. Symengine and SDPB are used for the most intensive symbolic and numerical steps respectively. After reviewing the built-in algorithms for conformal blocks, we explain how to use the code through a number of examples that verify past results. As an application, we show that the multi-correlator bootstrap still appears to single out the Wilson-Fisher fixed points as special theories in dimensions between 3 and 4 despite the recent proof that they violate unitarity.
We apply the spectral curve topological recursion to Dubrovin’s universal Landau–Ginzburg superpotential associated to a semi-simple point of any conformal Frobenius manifold. We show that under some conditions the expansion of the correlation differentials reproduces the cohomological field theory associated with the same point of the initial Frobenius manifold.
The lattice Boltzmann method is employed to simulate the steady flow in a two-dimensional lid-driven semi-elliptical cavity. Reynolds number (Re) and vertical-to-horizontal semi-axis ratio (D) are in the range of 500-5000 and 0.1-4, respectively. The effects of Re and D on the vortex structure and pressure field are investigated, and the evolutionary features of the vortex structure with Re and D are analyzed in detail. Simulation results show that the vortex structure and its evolutionary features significantly depend on Re and D. The steady flow is characterized by one vortex in the semi-elliptical cavity when both Re and D are small. As Re increases, the appearance of the vortex structure becomes more complex. When D is less than 1, increasing D makes the large vortexes more round, and the evolution of the vortexes with D becomes more complex with increasing Re. When D is greater than 1, the steady flow consists of a series of large vortexes which superimpose on each other. As Re and D increase, the number of the large vortexes increases. Additionally, a small vortex in the upper-left corner of the semi-elliptical cavity appears at a large Re and its size increases slowly as Re increases. The highest pressures appear in the upper-right corner and the pressure changes drastically in the upper-right region of the cavity. The total pressure differences in the semi-elliptical cavity with a fixed D decrease with increasing Re. In the region of themain vortex, the pressure contours nearly coincide with the streamlines, especially for the cavity flow with a large Re.
In this work we prove the so-called dimension property for the cohomological field theory associated with a homogeneous polynomial $W$ with an isolated singularity, in the algebraic framework of [A. Polishchuk and A. Vaintrob, Matrix factorizations and cohomological field theories, J. Reine Angew. Math. 714 (2016), 1–122]. This amounts to showing that some cohomology classes on the Deligne–Mumford moduli spaces of stable curves, constructed using Fourier–Mukai-type functors associated with matrix factorizations, live in prescribed dimension. The proof is based on a homogeneity result established in [A. Polishchuk and A. Vaintrob, Algebraic construction of Witten’s top Chern class, in Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) (American Mathematical Society, Providence, RI, 2001), 229–249] for certain characteristic classes of Koszul matrix factorizations of $0$. To reduce to this result, we use the theory of Fourier–Mukai-type functors involving matrix factorizations and the natural rational lattices in the relevant Hochschild homology spaces, as well as a version of Hodge–Riemann bilinear relations for Hochschild homology of matrix factorizations. Our approach also gives a proof of the dimension property for the cohomological field theories associated with some quasihomogeneous polynomials with an isolated singularity.
We study the Feynman integral for the three-banana graph defined as the scalar two-point self-energy at three-loop order. The Feynman integral is evaluated for all identical internal masses in two space-time dimensions. Two calculations are given for the Feynman integral: one based on an interpretation of the integral as an inhomogeneous solution of a classical Picard–Fuchs differential equation, and the other using arithmetic algebraic geometry, motivic cohomology, and Eisenstein series. Both methods use the rather special fact that the Feynman integral is a family of regulator periods associated to a family of $K3$ surfaces. We show that the integral is given by a sum of elliptic trilogarithms evaluated at sixth roots of unity. This elliptic trilogarithm value is related to the regulator of a class in the motivic cohomology of the $K3$ family. We prove a conjecture by David Broadhurst which states that at a special kinematical point the Feynman integral is given by a critical value of the Hasse–Weil $L$-function of the $K3$ surface. This result is shown to be a particular case of Deligne’s conjectures relating values of $L$-functions inside the critical strip to periods.
Motivated by a class of nonlinear nonlocal equations of interest for string theory, we introduce Sobolev spaces on arbitrary locally compact abelian groups and we examine some of their properties. Specifically, we focus on analogs of the Sobolev embedding and Rellich–Kondrachov compactness theorems. As an application, we prove the existence of continuous solutions to a generalized bosonic string equation posed on an arbitrary compact abelian group, and we also remark that our approach allows us to solve very general linear equations in a $p$-adic context.
We show that the massless particle spectrum in a four-dimensional conformal Haag–Kastler net is generated by a free field subnet. If the massless particle spectrum is scalar, then the free field subnet decouples as a tensor product component.
We present a procedure for constructing families of local, massive and interacting Haag–Kastler nets on the two-dimensional spacetime through an operator-algebraic method. A proof of existence of local observables is given without relying on modular nuclearity. By a similar technique, another family of wedge-local nets is constructed using certain endomorphisms of conformal nets recently studied by Longo and Witten.
Many quantum field theories in one, two and four dimensions possess remarkable limits in which the instantons are present, the anti-instantons are absent, and the perturbative corrections are reduced to one-loop. We analyse the corresponding models as full quantum field theories, beyond their topological sector. We show that the correlation functions of all, not only topological (or BPS), observables may be studied explicitly in these models, and the spectrum may be computed exactly. An interesting feature is that the Hamiltonian is not always diagonalizable, but may have Jordan blocks, which leads to the appearance of logarithms in the correlation functions. We also find that in the models defined on Kähler manifolds the space of states exhibits holomorphic factorization. We conclude that in dimensions two and four our theories are logarithmic conformal field theories.
In Part I we describe the class of models under study and present our results in the case of one-dimensional (quantum mechanical) models, which is quite representative and at the same time simple enough to analyse explicitly. Part II will be devoted to supersymmetric two-dimensional sigma models and four-dimensional Yang–Mills theory. In Part III we will discuss non-supersymmetric models.
Algebras associated with quantum electrodynamics and other gauge theories share some mathematical features with T-duality. Exploiting this different perspective and some category theory, the full algebra of fermions and bosons can be regarded as a braided Clifford algebra over a braided commutative boson algebra, sharing much of the structure of ordinary Clifford algebras.
We give a classifying theory for LG-bundles, where LG is the loop group of a compact Lie group G, and present a calculation for the string class of the universal LG-bundle. We show that this class is in fact an equivariant cohomology class and give an equivariant differential form representing it. We then use the caloron correspondence to define (higher) characteristic classes for LG-bundles and to prove a result for characteristic classes for based loop groups for the free loop group. These classes have a natural interpretation in equivariant cohomology and we give equivariant differential form representatives for the universal case in all odd dimensions.
The actions, anomalies and quantization conditions allow the M2-brane and the M5-brane to support, in a natural way, structures beyond spin on their world-volumes. The main examples are twisted string structures. This also extends to twisted stringc structures which we introduce and relate to twisted string structures. The relation of the C-field to Chern–Simons theory suggests the use of the string cobordism category to describe the M2-brane.
We present a superfield formulation of the chiral de Rham complex (CDR), as introduced by Malikov, Schechtman and Vaintrob in 1999, in the setting of a general smooth manifold, and use it to endow CDR with superconformal structures of geometric origin. Given a Riemannian metric, we construct an N=1 structure on CDR (action of the N=1 super-Virasoro, or Neveu–Schwarz, algebra). If the metric is Kähler, and the manifold Ricci-flat, this is augmented to an N=2 structure. Finally, if the manifold is hyperkähler, we obtain an N=4 structure. The superconformal structures are constructed directly from the Levi-Civita connection. These structures provide an analog for CDR of the extended supersymmetries of nonlinear σ-models.
We give some higher dimensional analogues of the Durfee square formula and point out their relation to dissections of multipartitions. We apply the results to write certain affine Lie algebra characters in terms of Universal Chiral Partition Functions.