To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a ‘Whitney’ presentation, and a ‘Coulomb branch’ presentation, for the torus equivariant quantum K theory of the Grassmann manifold $\mathrm {Gr}(k;n)$, inspired from physics, and stated in an earlier paper. The first presentation is obtained by quantum deforming the product of the Hirzebruch $\lambda _y$ classes of the tautological bundles. In physics, the $\lambda _y$ classes arise as certain Wilson line operators. The second presentation is obtained from the Coulomb branch equations involving the partial derivatives of a twisted superpotential from supersymmetric gauge theory. This is closest to a presentation obtained by Gorbounov and Korff, utilizing integrable systems techniques. Algebraically, we relate the Coulomb and Whitney presentations utilizing transition matrices from the (equivariant) Grothendieck polynomials to the (equivariant) complete homogeneous symmetric polynomials. Along the way, we calculate K-theoretic Gromov-Witten invariants of wedge powers of the tautological bundles on $\mathrm {Gr}(k;n)$, using the ‘quantum=classical’ statement.
We give combinatorially controlled series solutions to Dyson–Schwinger equations with multiple insertion places using tubings of rooted trees and investigate the algebraic relation between such solutions and the renormalization group equation.
We introduce a set of axioms for locally topologically ordered quantum spin systems in terms of nets of local ground state projections, and we show they are satisfied by Kitaev’s Toric Code and Levin-Wen type models. For a locally topologically ordered spin system on $\mathbb {Z}^{k}$, we define a local net of boundary algebras on $\mathbb {Z}^{k-1}$, which provides a mathematically precise algebraic description of the holographic dual of the bulk topological order. We construct a canonical quantum channel so that states on the boundary quasi-local algebra parameterize bulk-boundary states without reference to a boundary Hamiltonian. As a corollary, we obtain a new proof of a recent result of Ogata [Oga24] that the bulk cone von Neumann algebra in the Toric Code is of type $\mathrm {II}$, and we show that Levin-Wen models can have cone algebras of type $\mathrm {III}$. Finally, we argue that the braided tensor category of DHR bimodules for the net of boundary algebras characterizes the bulk topological order in (2+1)D, and can also be used to characterize the topological order of boundary states.
Gel’fand–Dorfman algebras (GD algebras) give a natural construction of Lie conformal algebras and are in turn characterized by this construction. In this article, we define the Gel’fand–Dorfman bialgebra (GD bialgebra) and enrich the above construction to a construction of Lie conformal bialgebras by GD bialgebras. As a special case, Novikov bialgebras yield Lie conformal bialgebras. We further introduce the notion of the Gel’fand–Dorfman Yang–Baxter equation (GDYBE), whose skew-symmetric solutions produce GD bialgebras. Moreover, the notions of $\mathcal {O}$-operators on GD algebras and pre-Gel’fand–Dorfman algebras (pre-GD algebras) are introduced to provide skew-symmetric solutions of the GDYBE. The relationships between these notions for GD algebras and the corresponding ones for Lie conformal algebras are given. In particular, there is a natural construction of Lie conformal bialgebras from pre-GD algebras. Finally, GD bialgebras are characterized by certain matched pairs and Manin triples of GD algebras.
Let $X$ be a compact Riemann surface. Let $(E,\theta )$ be a stable Higgs bundle of degree $0$ on $X$. Let $h_{\det (E)}$ denote a flat metric of the determinant bundle $\det (E)$. For any $t\gt 0$, there exists a unique harmonic metric $h_t$ of $(E,t\theta )$ such that $\det (h_t)=h_{\det (E)}$. We prove that if the Higgs bundle is induced by a line bundle on the normalization of the spectral curve, then the sequence $h_t$ is convergent to the naturally defined decoupled harmonic metric at the speed of the exponential order. We also obtain a uniform convergence for such a family of Higgs bundles.
This paper considers the large N limit of Wilson loops for the two-dimensional Euclidean Yang–Mills measure on all orientable compact surfaces of genus larger or equal to $1$, with a structure group given by a classical compact matrix Lie group. Our main theorem shows the convergence of all Wilson loops in probability, given that it holds true on a restricted class of loops, obtained as a modification of geodesic paths. Combined with the result of [20], a corollary is the convergence of all Wilson loops on the torus. Unlike the sphere case, we show that the limiting object is remarkably expressed thanks to the master field on the plane defined in [3, 39], and we conjecture that this phenomenon is also valid for all surfaces of higher genus. We prove that this conjecture holds true whenever it does for the restricted class of loops of the main theorem. Our result on the torus justifies the introduction of an interpolation between free and classical convolution of probability measures, defined with the free unitary Brownian motion but differing from t-freeness of [5] that was defined in terms of the liberation process of Voiculescu [67]. In contrast to [20], our main tool is a fine use of Makeenko–Migdal equations, proving uniqueness of their solution under suitable assumptions, and generalising the arguments of [21, 33].
We study Gibbs measures with log-correlated base Gaussian fields on the d-dimensional torus. In the defocusing case, the construction of such Gibbs measures follows from Nelson’s argument. In this paper, we consider the focusing case with a quartic interaction. Using the variational formulation, we prove nonnormalizability of the Gibbs measure. When $d = 2$, our argument provides an alternative proof of the nonnormalizability result for the focusing $\Phi ^4_2$-measure by Brydges and Slade (1996). Furthermore, we provide a precise rate of divergence, where the constant is characterized by the optimal constant for a certain Bernstein’s inequality on $\mathbb R^d$. We also go over the construction of the focusing Gibbs measure with a cubic interaction. In the appendices, we present (a) nonnormalizability of the Gibbs measure for the two-dimensional Zakharov system and (b) the construction of focusing quartic Gibbs measures with smoother base Gaussian measures, showing a critical nature of the log-correlated Gibbs measure with a focusing quartic interaction.
The $c_2$ invariant is an arithmetic graph invariant related to quantum field theory. We give a relation modulo p between the $c_2$ invariant at p and the $c_2$ invariant at $p^s$ by proving a relation modulo p between certain coefficients of powers of products of particularly nice polynomials. The relation at the level of the $c_2$ invariant provides evidence for a conjecture of Schnetz.
Let $(M,g)$ be a closed Riemannian $4$-manifold and let E be a vector bundle over M with structure group G, where G is a compact Lie group. We consider a new higher order Yang–Mills–Higgs functional, in which the Higgs field is a section of $\Omega ^0(\text {ad}E)$. We show that, under suitable conditions, solutions to the gradient flow do not hit any finite time singularities. In the case that E is a line bundle, we are able to use a different blow-up procedure and obtain an improvement of the long-time result of Zhang [‘Gradient flows of higher order Yang–Mills–Higgs functionals’, J. Aust. Math. Soc.113 (2022), 257–287]. The proof relies on properties of the Green function, which is very different from the previous techniques.
Let $G$ be a compact connected simple Lie group of type $(n_{1},\,\ldots,\,n_{l})$, where $n_{1}<\cdots < n_{l}$. Let $\mathcal {G}_k$ be the gauge group of the principal $G$-bundle over $S^{4}$ corresponding to $k\in \pi _3(G)\cong \mathbb {Z}$. We calculate the mod-$p$ homology of the classifying space $B\mathcal {G}_k$ provided that $n_{l}< p-1$.
We relate the quantum cohomology of minuscule flag manifolds to the tt*-Toda equations, a special case of the topological–antitopological fusion equations which were introduced by Cecotti and Vafa in their study of supersymmetric quantum field theories. To do this, we combine the Lie-theoretic treatment of the tt*-Toda equations of Guest–Ho with the Lie-theoretic description of the quantum cohomology of minuscule flag manifolds from Chaput–Manivel–Perrin and Golyshev–Manivel.
We construct and study some vertex theoretic invariants associated with Poisson varieties, specializing in the conformal weight $0$ case to the familiar package of Poisson homology and cohomology. In order to do this conceptually, we sketch a version of the calculus, in the sense of [12], adapted to the context of vertex algebras. We obtain the standard theorems of Poisson (co)homology in this chiral context. This is part of a larger project related to promoting noncommutative geometric structures to chiral versions of such.
Wilson loop diagrams are an important tool in studying scattering amplitudes of SYM $N=4$ theory and are known by previous work to be associated to positroids. In this paper, we study the structure of the associated positroids, as well as the structure of the denominator of the integrand defined by each diagram. We give an algorithm to derive the Grassmann necklace of the associated positroid directly from the Wilson loop diagram, and a recursive proof that the dimension of these cells is thrice the number of propagators in the diagram. We also show that the ideal generated by the denominator in the integrand is the radical of the ideal generated by the product of Grassmann necklace minors.
We compute the large N limit of the partition function of the Euclidean Yang–Mills measure on orientable compact surfaces with genus $g\geqslant 1$ and non-orientable compact surfaces with genus $g\geqslant 2$, with structure group the unitary group ${\mathrm U}(N)$ or special unitary group ${\mathrm{SU}}(N)$. Our proofs are based on asymptotic representation theory: more specifically, we control the dimension and Casimir number of irreducible representations of ${\mathrm U}(N)$ and ${\mathrm{SU}}(N)$ when N tends to infinity. Our main technical tool, involving ‘almost flat’ Young diagram, makes rigorous the arguments used by Gross and Taylor (1993, Nuclear Phys. B400(1–3) 181–208) in the setting of QCD, and in some cases, we recover formulae given by Douglas (1995, Quantum Field Theory and String Theory (Cargèse, 1993), Vol. 328 of NATO Advanced Science Institutes Series B: Physics, Plenum, New York, pp. 119–135) and Rusakov (1993, Phys. Lett. B303(1) 95–98).
In this paper, we define a family of functionals generalizing the Yang–Mills–Higgs functionals on a closed Riemannian manifold. Then we prove the short-time existence of the corresponding gradient flow by a gauge-fixing technique. The lack of a maximum principle for the higher order operator brings us a lot of inconvenience during the estimates for the Higgs field. We observe that the $L^2$-bound of the Higgs field is enough for energy estimates in four dimensions and we show that, provided the order of derivatives appearing in the higher order Yang–Mills–Higgs functionals is strictly greater than one, solutions to the gradient flow do not hit any finite-time singularities. As for the Yang–Mills–Higgs k-functional with Higgs self-interaction, we show that, provided $\dim (M)<2(k+1)$, for every smooth initial data the associated gradient flow admits long-time existence. The proof depends on local $L^2$-derivative estimates, energy estimates and blow-up analysis.
Wilson loop diagrams are an important tool in studying scattering amplitudes of SYM $N=4$ theory and are known by previous work to be associated to positroids. We characterize the conditions under which two Wilson loop diagrams give the same positroid, prove that an important subclass of subdiagrams (exact subdiagrams) corresponds to uniform matroids, and enumerate the number of different Wilson loop diagrams that correspond to each positroid cell. We also give a correspondence between those positroids which can arise from Wilson loop diagrams and directions in associahedra.
Fundamental group of a manifold gives a deep effect on its underlying smooth structure. In this paper we introduce a new variant of the Donaldson invariant in Yang–Mills gauge theory from twisting by the Picard group of a 4-manifold in the case when the fundamental group is free abelian. We then generalise it to the general case of fundamental groups by use of the framework of non commutative geometry. We also verify that our invariant distinguishes smooth structures between some homeomorphic 4-manifolds.
We introduce a new family of real-analytic modular forms on the upper-half plane. They are arguably the simplest class of ‘mixed’ versions of modular forms of level one and are constructed out of real and imaginary parts of iterated integrals of holomorphic Eisenstein series. They form an algebra of functions satisfying many properties analogous to classical holomorphic modular forms. In particular, they admit expansions in $q,\overline{q}$ and $\log |q|$ involving only rational numbers and single-valued multiple zeta values. The first nontrivial functions in this class are real-analytic Eisenstein series.
We obtain simple quadratic recurrence formulas counting bipartite maps on surfaces with prescribed degrees (in particular, $2k$-angulations) and constellations. These formulas are the fastest known way of computing these numbers.
Our work is a natural extension of previous works on integrable hierarchies (2-Toda and KP), namely, the Pandharipande recursion for Hurwitz numbers (proved by Okounkov and simplified by Dubrovin–Yang–Zagier), as well as formulas for several models of maps (Goulden–Jackson, Carrell–Chapuy, Kazarian–Zograf). As for those formulas, a bijective interpretation is still to be found. We also include a formula for monotone simple Hurwitz numbers derived in the same fashion.
These formulas also play a key role in subsequent work of the author with T. Budzinski establishing the hyperbolic local limit of random bipartite maps of large genus.