We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let A be an abelian scheme of dimension at least four over a
$\mathbb {Z}$
-finitely generated integral domain R of characteristic zero, and let L be an ample line bundle on A. We prove that the set of smooth hypersurfaces D in A representing L is finite by showing that the moduli stack of such hypersurfaces has only finitely many R-points. We accomplish this by using level structures to interpolate finiteness results between this moduli stack and the stack of canonically polarized varieties.
We develop a general approach to prove K-stability of Fano varieties. The new theory is used to (a) prove the existence of Kähler-Einstein metrics on all smooth Fano hypersurfaces of Fano index two, (b) compute the stability thresholds for hypersurfaces at generalised Eckardt points and for cubic surfaces at all points, and (c) provide a new algebraic proof of Tian’s criterion for K-stability, amongst other applications.
As is well known, the holomorphic sectional curvature is just half of the sectional curvature in a holomorphic plane section on a Kähler manifold (Zheng, Complex differential geometry (2000)). In this article, we prove that if the holomorphic sectional curvature is half of the sectional curvature in a holomorphic plane section on a Hermitian manifold then the Hermitian metric is Kähler.
We use feral pseudoholomorphic curves and adiabatic degeneration to prove an extended version of the so-called ‘almost existence result’ for regular compact Hamiltonian energy surfaces. That is, that for a variety of symplectic manifolds equipped with a Hamiltonian, almost every (non-empty) compact energy level has a periodic orbit.
Consider a holomorphic submersion between compact Kähler manifolds, such that each fibre admits a constantscalar curvature Kähler metric. When the fibres admit continuous automorphisms, a choice of fibrewise constant scalarcurvature Kähler metric is not unique. An optimal symplectic connection is a choice of fibrewise constant scalar curvature Kähler metric satisfying a geometric partial differential equation. The condition generalises the Hermite-Einstein condition for a holomorphic vector bundle through the induced fibrewise Fubini-Study metric on the associated projectivisation.
We prove various foundational analytic results concerning optimal symplectic connections. Our main result proves that optimal symplectic connections are unique, up to the action of the automorphism group of the submersion, when they exist. Thus optimal symplectic connections are canonical relatively Kähler metrics when they exist. In addition, we show that the existence of an optimal symplectic connection forces the automorphism group of the submersion to be reductive and that an optimal symplectic connection is automatically invariant under a maximal compact subgroup of this automorphism group. We also prove that when a submersion admits an optimal symplectic connection, it achieves the absolute minimum of a natural log norm functional, which we define.
We prove that the only relation imposed on the Hodge and Chern numbers of a compact Kähler manifold by the existence of a nowhere zero holomorphic one-form is the vanishing of the Hirzebruch genus. We also treat the analogous problem for nowhere zero closed one-forms on smooth manifolds.
We discuss a minimisation problem of the degree of the Chow–Mumford (CM) line bundle among all possible fillings of a polarised family with fixed general fibers, motivated by the study of the moduli space of K-stable Fano varieties. We show that such minimisation implies the slope semistability of the fiber if the central fiber is smooth.
We investigate parallel Lagrangian foliations on Kähler manifolds. On the one hand, we show that a Kähler metric admitting a parallel Lagrangian foliation must be flat. On the other hand, we give many examples of parallel Lagrangian foliations on closed flat Kähler manifolds which are not tori. These examples arise from Anosov automorphisms preserving a Kähler form.
Tian’s criterion for K-stability states that a Fano variety of dimension n whose alpha invariant is greater than
${n}{/(n+1)}$
is K-stable. We show that this criterion is sharp by constructing n-dimensional singular Fano varieties with alpha invariants
${n}{/(n+1)}$
that are not K-polystable for sufficiently large n. We also construct K-unstable Fano varieties with alpha invariants
${(n-1)}{/n}$
.
We define and study jet bundles in the geometric orbifold category. We show that the usual arguments from the compact and the logarithmic settings do not all extend to this more general framework. This is illustrated by simple examples of orbifold pairs of general type that do not admit any global jet differential, even if some of these examples satisfy the Green–Griffiths–Lang conjecture. This contrasts with an important result of Demailly (Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, Pure Appl. Math. Q. 7 (2011), 1165–1207) proving that compact varieties of general type always admit jet differentials. We illustrate the usefulness of the study of orbifold jets by establishing the hyperbolicity of some orbifold surfaces, that cannot be derived from the current techniques in Nevanlinna theory. We also conjecture that Demailly's theorem should hold for orbifold pairs with smooth boundary divisors under a certain natural multiplicity condition, and provide some evidence towards it.
This paper stems from the observation (arising from work of Delzant) that “most” Kähler groups $G$ virtually algebraically fiber, that is, admit a finite index subgroup that maps onto $\mathbb{Z}$ with finitely generated kernel. For the remaining ones, the Albanese dimension of all finite index subgroups is at most one, that is, they have virtual Albanese dimension $va(G)\leqslant 1$. We show that the existence of algebraic fibrations has implications in the study of coherence and higher BNSR invariants of the fundamental group of aspherical Kähler surfaces. The class of Kähler groups with $va(G)=1$ includes virtual surface groups. Further examples exist; nonetheless, they exhibit a strong relation with surface groups. In fact, we show that the Green–Lazarsfeld sets of groups with $va(G)=1$ (virtually) coincide with those of surface groups, and furthermore that the only virtually RFRS groups with $va(G)=1$ are virtually surface groups.
We prove that every birationally superrigid Fano variety whose alpha invariant is greater than (respectively no smaller than) $\frac{1}{2}$ is K-stable (respectively K-semistable). We also prove that the alpha invariant of a birationally superrigid Fano variety of dimension $n$ is at least $1/(n+1)$ (under mild assumptions) and that the moduli space (if it exists) of birationally superrigid Fano varieties is separated.
We resolve parts (A) and (B) of Problem 1.100 from Kirby’s list [Problems in low-dimensional topology, in Geometric topology, AMS/IP Studies in Advanced Mathematics, vol. 2 (American Mathematical Society, Providence, RI, 1997), 35–473] by showing that many nontrivial links arise as cross-sections of unknotted holomorphic disks in the four-ball. The techniques can be used to produce unknotted ribbon surfaces with prescribed cross-sections, including unknotted Lagrangian disks with nontrivial cross-sections.
A polarized variety is K-stable if, for any test configuration, the Donaldson–Futaki invariant is positive. In this paper, inspired by classical geometric invariant theory, we describe the space of test configurations as a limit of a direct system of Tits buildings. We show that the Donaldson–Futaki invariant, conveniently normalized, is a continuous function on this space. We also introduce a pseudo-metric on the space of test configurations. Recall that K-stability can be enhanced by requiring that the Donaldson–Futaki invariant is positive on any admissible filtration of the co-ordinate ring. We show that admissible filtrations give rise to Cauchy sequences of test configurations with respect to the above mentioned pseudo-metric.
We show that the anti-canonical volume of an $n$-dimensional Kähler–Einstein $\mathbb{Q}$-Fano variety is bounded from above by certain invariants of the local singularities, namely $\operatorname{lct}^{n}\cdot \operatorname{mult}$ for ideals and the normalized volume function for real valuations. This refines a recent result by Fujita. As an application, we get sharp volume upper bounds for Kähler–Einstein Fano varieties with quotient singularities. Based on very recent results by Li and the author, we show that a Fano manifold is K-semistable if and only if a de Fernex–Ein–Mustaţă type inequality holds on its affine cone.
We prove a bound relating the volume of a curve near a cusp in a complex ball quotient $X=\mathbb{B}/\unicode[STIX]{x1D6E4}$ to its multiplicity at the cusp. There are a number of consequences: we show that for an $n$-dimensional toroidal compactification $\overline{X}$ with boundary $D$, $K_{\overline{X}}+(1-\unicode[STIX]{x1D706})D$ is ample for $\unicode[STIX]{x1D706}\in (0,(n+1)/2\unicode[STIX]{x1D70B})$, and in particular that $K_{\overline{X}}$ is ample for $n\geqslant 6$. By an independent algebraic argument, we prove that every ball quotient of dimension $n\geqslant 4$ is of general type, and conclude that the phenomenon famously exhibited by Hirzebruch in dimension 2 does not occur in higher dimensions. Finally, we investigate the applications to the problem of bounding the number of cusps and to the Green–Griffiths conjecture.
Let $X$ be a compact Kähler manifold and $\{\unicode[STIX]{x1D703}\}$ be a big cohomology class. We prove several results about the singularity type of full mass currents, answering a number of open questions in the field. First, we show that the Lelong numbers and multiplier ideal sheaves of $\unicode[STIX]{x1D703}$-plurisubharmonic functions with full mass are the same as those of a current with minimal singularities. Second, given another big and nef class $\{\unicode[STIX]{x1D702}\}$, we show the inclusion ${\mathcal{E}}(X,\unicode[STIX]{x1D702})\cap \operatorname{PSH}(X,\unicode[STIX]{x1D703})\subset {\mathcal{E}}(X,\unicode[STIX]{x1D703})$. Third, we characterize big classes whose full mass currents are ‘additive’. Our techniques make use of a characterization of full mass currents in terms of the envelope of their singularity type. As an essential ingredient we also develop the theory of weak geodesics in big cohomology classes. Numerous applications of our results to complex geometry are also given.
We establish a Schwarz lemma for $V$-harmonic maps of generalised dilatation between Riemannian manifolds. We apply the result to obtain corresponding results for Weyl harmonic maps of generalised dilatation from conformal Weyl manifolds to Riemannian manifolds and holomorphic maps from almost Hermitian manifolds to quasi-Kähler and almost Kähler manifolds.
We prove a dimension-free strong uniformity theorem, and apply it in the configuration space of a large system of non-interacting particles, to describe the fast approach to equilibrium starting from off-equilibrium, and its long-term stability.