We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the set $D(M,N)$ of all possible mapping degrees from $M$ to $N$ when $M$ and $N$ are quasitoric $4$-manifolds. In some of the cases, we completely describe this set. Our results rely on Theorems proved by Duan and Wang and the sets of integers obtained are interesting from the number theoretical point of view, for example those representable as the sum of two squares $D(\mathbb{C}P^{2}\sharp \mathbb{C}P^{2},\mathbb{C}P^{2})$ or the sum of three squares $D(\mathbb{C}P^{2}\sharp \mathbb{C}P^{2}\sharp \mathbb{C}P^{2},\mathbb{C}P^{2})$. In addition to the general results about the mapping degrees between quasitoric 4-manifolds, we establish connections between Duan and Wang’s approach, quadratic forms, number theory and lattices.
Let $X$ be a compact Kähler manifold, endowed with an effective reduced divisor $B=\sum Y_{k}$ having simple normal crossing support. We consider a closed form of $(1,1)$-type $\unicode[STIX]{x1D6FC}$ on $X$ whose corresponding class $\{\unicode[STIX]{x1D6FC}\}$ is nef, such that the class $c_{1}(K_{X}+B)+\{\unicode[STIX]{x1D6FC}\}\in H^{1,1}(X,\mathbb{R})$ is pseudo-effective. A particular case of the first result we establish in this short note states the following. Let $m$ be a positive integer, and let $L$ be a line bundle on $X$, such that there exists a generically injective morphism $L\rightarrow \bigotimes ^{m}T_{X}^{\star }\langle B\rangle$, where we denote by $T_{X}^{\star }\langle B\rangle$ the logarithmic cotangent bundle associated to the pair $(X,B)$. Then for any Kähler class $\{\unicode[STIX]{x1D714}\}$ on $X$, we have the inequality
If $X$ is projective, then this result gives a generalization of a criterion due to Y. Miyaoka, concerning the generic semi-positivity: under the hypothesis above, let $Q$ be the quotient of $\bigotimes ^{m}T_{X}^{\star }\langle B\rangle$ by $L$. Then its degree on a generic complete intersection curve $C\subset X$ is bounded from below by
As a consequence, we obtain a new proof of one of the main results of our previous work [F. Campana and M. Păun, Orbifold generic semi-positivity: an application to families of canonically polarized manifolds, Ann. Inst. Fourier (Grenoble) 65 (2015), 835–861].
Suppose that a complex manifold M is locally embedded into a higher-dimensional neighbourhood as a submanifold. We show that, if the local neighbourhood germs are compatible in a suitable sense, then they glue together to give a global neighbourhood of M. As an application, we prove a global version of Hertling–Manin's unfolding theorem for germs of TEP structures; this has applications in the study of quantum cohomology.
The Kodaira–Thurston manifold is a quotient of a nilpotent Lie group by a cocompact lattice. We compute the family Gromov–Witten invariants which count pseudoholomorphic tori in the Kodaira–Thurston manifold. For a fixed symplectic form the Gromov–Witten invariant is trivial so we consider the twistor family of left-invariant symplectic forms which are orthogonal for some fixed metric on the Lie algebra. This family defines a loop in the space of symplectic forms. This is the first example of a genus one family Gromov–Witten computation for a non-Kähler manifold.
We prove by the Hilbert–Mumford criterion that a slope stable polarized weighted pointed nodal curve is Chow asymptotic stable. This generalizes the result of Caporaso on stability of polarized nodal curves and of Hassett on weighted pointed stable curves polarized by the weighted dualizing sheaves. It also solves a question raised by Mumford and Gieseker, to prove the Chow asymptotic stability of stable nodal curves by the Hilbert–Mumford criterion.
We compute the global log canonical thresholds of quasi-smooth well-formed complete intersection log del Pezzo surfaces of amplitude 1 in weighted projective spaces. As a corollary we show the existence of orbifold Kähler—Einstein metrics on many of them.
In this paper we extend results due to Vogt on line bundles over Cousin groups to the case of domains stable by the maximal compact subgroup. This is used to show that the algebraic dimension of Oeljeklaus—Toma manifolds (OT-manifolds) is 0. In the last part we establish that certain Cousin groups, in particular those arising from the construction of OT-manifolds, have finite-dimensional irregularity.
We extend to compact Kähler manifolds some classical results on linear representation of fundamental groups of complex projective manifolds. Our approach, based on an interversion lemma for fibrations with tori versus general type manifolds as fibers, gives a refinement of the classical work of Zuo. We extend to the Kähler case some general results on holomorphic convexity of coverings such as the linear Shafarevich conjecture.
Let $X$ be a smooth complex projective manifold of dimension $n$ equipped with an ample line bundle $L$ and a rank $k$ holomorphic vector bundle $E$. We assume that $1\leqslant k\leqslant n$, that $X$, $E$ and $L$ are defined over the reals and denote by $\mathbb{R}X$ the real locus of $X$. Then, we estimate from above and below the expected Betti numbers of the vanishing loci in $\mathbb{R}X$ of holomorphic real sections of $E\otimes L^{d}$, where $d$ is a large enough integer. Moreover, given any closed connected codimension $k$ submanifold ${\it\Sigma}$ of $\mathbb{R}^{n}$ with trivial normal bundle, we prove that a real section of $E\otimes L^{d}$ has a positive probability, independent of $d$, of containing around $\sqrt{d}^{n}$ connected components diffeomorphic to ${\it\Sigma}$ in its vanishing locus.
In this paper, we develop a method of solving the Poincaré–Lelong equation, mainly via the study of the large time asymptotics of a global solution to the Hodge–Laplace heat equation on $(1, 1)$-forms. The method is effective in proving an optimal result when $M$ has nonnegative bisectional curvature. It also provides an alternate proof of a recent gap theorem of the first author.
We establish a defect relation for algebraically non-degenerate meromorphic maps over generalized p-parabolic manifolds that intersect hypersurfaces in smooth projective algebraic varieties, extending certain results of H. Cartan, L. Ahlfors, W. Stoll, M. Ru, P. M. Wong and Philip P. W. Wong and others.
We determine the structure of the Hodge ring, a natural object encoding the Hodge numbers of all compact Kähler manifolds. As a consequence of this structure, there are no unexpected relations among the Hodge numbers, and no essential differences between the Hodge numbers of smooth complex projective varieties and those of arbitrary Kähler manifolds. The consideration of certain natural ideals in the Hodge ring allows us to determine exactly which linear combinations of Hodge numbers are birationally invariant, and which are topological invariants. Combining the Hodge and unitary bordism rings, we are also able to treat linear combinations of Hodge and Chern numbers. In particular, this leads to a complete solution of a classical problem of Hirzebruch’s.
We associate to a test configuration for a polarized variety a filtration of the section ring of the line bundle. Using the recent work of Boucksom and Chen we get a concave function on the Okounkov body whose law with respect to Lebesgue measure determines the asymptotic distribution of the weights of the test configuration. We show that this is a generalization of a well-known result in toric geometry. As an application, we prove that the pushforward of the Lebesgue measure on the Okounkov body is equal to a Duistermaat–Heckman measure of a certain deformation of the manifold. Via the Duisteraat–Heckman formula, we get as a corollary that in the special case of an effective ℂ×-action on the manifold lifting to the line bundle, the pushforward of the Lebesgue measure on the Okounkov body is piecewise polynomial.
We give bounds for the Betti numbers of projective algebraic varieties in terms of their classes (degrees of dual varieties of successive hyperplane sections). We also give bounds for classes in terms of ramification volumes (mixed ramification degrees), sectional genus and, eventually, in terms of dimension, codimension and degree. For varieties whose degree is large with respect to codimension, we give sharp bounds for the above invariants and classify the varieties on the boundary, thus obtaining a generalization of Castelnuovo’s theory for curves to varieties of higher dimension.
It is well known in Kähler geometry that the infinite-dimensional symmetric space of smooth Kähler metrics in a fixed Kähler class on a polarized Kähler manifold is well approximated by finite-dimensional submanifolds of Bergman metrics of height k. Then it is natural to ask whether geodesics in can be approximated by Bergman geodesics in . For any polarized Kähler manifold, the approximation is in the C0 topology. For some special varieties, one expects better convergence: Song and Zelditch proved the C2 convergence for the torus-invariant metrics over toric varieties. In this article, we show that some C∞ approximation exists as well as a complete asymptotic expansion for principally polarized abelian varieties.
We provide certain unusual generalizations of Clausen's and Orr's theorems for solutions of fourth-order and fifth-order generalized hypergeometric equations. As an application, we present several examples of algebraic transformations of Calabi–Yau differential equations.
Let L → X be a positive line bundle on a compact complex manifold X. For compact submanifolds Y, S of X and a holomorphic submersion Y → S with compact fibre, we study curvature of a natural connection on certain line bundles on S.
We introduce a wide subclass $\mathcal{F}\left( X,\,\omega \right)$ of quasi-plurisubharmonic functions in a compact Kähler manifold, on which the complex Monge-Ampère operator is well defined and the convergence theorem is valid. We also prove that $\mathcal{F}\left( X,\,\omega \right)$ is a convex cone and includes all quasi-plurisubharmonic functions that are in the Cegrell class.
In this paper we consider the dynamical system involved by the Ricci operator on the space of Kähler metrics of a Fano manifold. Nadel has defined an iteration scheme given by the Ricci operator and asked whether it has some non-trivial periodic points. First, we prove that no such periodic points can exist. We define the inverse of the Ricci operator and consider the dynamical behaviour of its iterates for a Fano Kähler–Einstein manifold. Then we define a finite-dimensional procedure to give an approximation of Kähler–Einstein metrics using this iterative procedure and apply it on ℂℙ2 blown up in three points.
Let n=2,3,4,5 and let X be a smooth complex projective hypersurface of . In this paper we find an effective lower bound for the degree of X, such that every holomorphic entire curve in X must satisfy an algebraic differential equation of order k=n=dim X, and also similar bounds for order k>n. Moreover, for every integer n≥2, we show that there are no such algebraic differential equations of order k<n for a smooth hypersurface in .