To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we explore the applications of Tail Variance (TV) as a measure of tail riskiness and the confidence level of using Tail Conditional Expectation (TCE)-based risk capital. While TCE measures the expected loss of a risk that exceeds a certain threshold, TV measures the variability of risk along its tails. We first derive analytical formulas of TV and TCE for a large variety of probability distributions. These formulas are useful instruments for relevant research works on tail risk measures. We then propose a distribution-free approach utilizing TV to estimate the lower bounds of the confidence level of using TCE-based risk capital. In doing so, we introduce sharpened conditional probability inequalities, which halve the bounds of conventional Markov and Cantelli inequalities. Such an approach is easy to implement. We further investigate the characterization of tail risks by TV through an exploration of TV’s asymptotics. A distribution-free limit formula is derived for the asymptotics of TV. To further investigate the asymptotic properties, we consider two broad distribution families defined on tails, namely, the polynomial-tailed distributions and the exponential-tailed distributions. The two distribution families are found to exhibit an asymptotic equivalence between TV and the reciprocal square of the hazard rate. We also establish asymptotic relationships between TCE and VaR for the two families. Our asymptotic analysis contributes to the existing research by unifying the asymptotic expressions and the convergence rate of TV for Student-t distributions, exponential distributions, and normal distributions, which complements the discussion on the convergence rate of univariate cases in [28]. To show the usefulness of our results, we present two case studies based on real data from the industry. We first show how to use conditional inequalities to assess the confidence of using TCE-based risk capital for different types of insurance businesses. Then, for financial data, we provide alternative evidence for the relationship between the data frequency and the tail categorization by the asymptotics of TV.
In this manuscript, we address open questions raised by Dieker and Yakir (2014), who proposed a novel method of estimating (discrete) Pickands constants $\mathcal{H}^\delta_\alpha$ using a family of estimators $\xi^\delta_\alpha(T)$, $T>0$, where $\alpha\in(0,2]$ is the Hurst parameter, and $\delta\geq0$ is the step size of the regular discretization grid. We derive an upper bound for the discretization error $\mathcal{H}_\alpha^0 - \mathcal{H}_\alpha^\delta$, whose rate of convergence agrees with Conjecture 1 of Dieker and Yakir (2014) in the case $\alpha\in(0,1]$ and agrees up to logarithmic terms for $\alpha\in(1,2)$. Moreover, we show that all moments of $\xi_\alpha^\delta(T)$ are uniformly bounded and the bias of the estimator decays no slower than $\exp\{-\mathcal CT^{\alpha}\}$, as T becomes large.
A new risk measure, the Lambda Value-at-Risk (VaR), was proposed from a theoretical point of view as a generalization of the ordinary VaR in the literature. Motivated by the recent developments in risk sharing problems for the VaR and other risk measures, we study the optimization of risk sharing for the Lambda VaR. Explicit formulas of the inf-convolution and sum-optimal allocations are obtained with respect to the left Lambda VaRs, the right Lambda VaRs, or a mixed collection of the left and right Lambda VaRs. The inf-convolution of Lambda VaRs constrained to comonotonic allocations is investigated. Explicit formula for worst-case Lambda VaRs under model uncertainty induced by likelihood ratios is also given.
We study the tail asymptotics of two functionals (the maximum and the sum of the marks) of a generic cluster in two sub-models of the marked Poisson cluster process, namely the renewal Poisson cluster process and the Hawkes process. Under the hypothesis that the governing components of the processes are regularly varying, we extend results due to [6, 19], notably relying on Karamata’s Tauberian Theorem to do so. We use these asymptotics to derive precise large-deviation results in the fashion of [32] for the just-mentioned processes.
Continuous-time Markov chains are frequently used to model the stochastic dynamics of (bio)chemical reaction networks. However, except in very special cases, they cannot be analyzed exactly. Additionally, simulation can be computationally intensive. An approach to address these challenges is to consider a more tractable diffusion approximation. Leite and Williams (Ann. Appl. Prob.29, 2019) proposed a reflected diffusion as an approximation for (bio)chemical reaction networks, which they called the constrained Langevin approximation (CLA) as it extends the usual Langevin approximation beyond the first time some chemical species becomes zero in number. Further explanation and examples of the CLA can be found in Anderson et al. (SIAM Multiscale Modeling Simul.17, 2019).
In this paper, we extend the approximation of Leite and Williams to (nearly) density-dependent Markov chains, as a first step to obtaining error estimates for the CLA when the diffusion state space is one-dimensional, and we provide a bound for the error in a strong approximation. We discuss some applications for chemical reaction networks and epidemic models, and illustrate these with examples. Our method of proof is designed to generalize to higher dimensions, provided there is a Lipschitz Skorokhod map defining the reflected diffusion process. The existence of such a Lipschitz map is an open problem in dimensions more than one.
It is known that the simple slice sampler has robust convergence properties; however, the class of problems where it can be implemented is limited. In contrast, we consider hybrid slice samplers which are easily implementable and where another Markov chain approximately samples the uniform distribution on each slice. Under appropriate assumptions on the Markov chain on the slice, we give a lower bound and an upper bound of the spectral gap of the hybrid slice sampler in terms of the spectral gap of the simple slice sampler. An immediate consequence of this is that the spectral gap and geometric ergodicity of the hybrid slice sampler can be concluded from the spectral gap and geometric ergodicity of the simple version, which is very well understood. These results indicate that robustness properties of the simple slice sampler are inherited by (appropriately designed) easily implementable hybrid versions. We apply the developed theory and analyze a number of specific algorithms, such as the stepping-out shrinkage slice sampling, hit-and-run slice sampling on a class of multivariate targets, and an easily implementable combination of both procedures on multidimensional bimodal densities.
We consider the stochastic volatility model obtained by adding a compound Hawkes process to the volatility of the well-known Heston model. A Hawkes process is a self-exciting counting process with many applications in mathematical finance, insurance, epidemiology, seismology, and other fields. We prove a general result on the existence of a family of equivalent (local) martingale measures. We apply this result to a particular example where the sizes of the jumps are exponentially distributed. Finally, a practical application to efficient computation of exposures is discussed.
This chapter examines how attitudes are formed. Attitude formation is explained as a function of prior beliefs and information. This process is viewed through two complementary lenses: the static process and the dynamic process. The static model thinks of attitudes as a combination of ratings and rankings. We term this the multi-attribute model – a commonly used approach in psychology and economics. The dynamic model concentrates on how humans process information, where things like words, symbols, and memory networks take on practical significance. Ultimately, both models have many applications for the practitioner.
This chapter covers the concepts of error and bias and their application in practice using a total error framework. This includes a discussion of how to manage both sampling and non-sampling error, and covers ways to assess and address coverage bias, nonresponse bias, measurement error, and estimation error.
This chapter focuses on critical concepts that underlie our conceptualization of public opinion, including the link between the public and those who govern, public opinion’s stability, opinion as an attitude, and convergence. Pollsters need to understand these concepts to do their job properly. This chapter seeks to answer the questions: Why is public opinion important? Is it stable? and What is the role of emotions in opinion formation?
In this chapter, we define a communication strategy for the 2022 Brazilian presidential election using public opinion inputs. We ask a simple question – what is the winning message?
To do this, we deploy polling results from three 2,000 interview face-to-face polls and a battery of focus groups. These are what we call a benchmark, designed to identify key message themes and other public opinion inputs. To assess the campaign in course, we will analyze about 40,900 interviews conducted during 152 days of tracking. Note that we did not work for any campaign in Brazil. But we polled for private sector clients who wanted to understand and predict the election. In that capacity, we used our polling to mimic campaign dynamics in order to assess their relative effectiveness.
This chapter applies the total error framework presented in Chapter 5 to a case example of preelection polling during the 2016 US presidential election. Here, the focus is on problems with a single poll.
This chapter applies the total error framework presented in Chapter 5 to a case example of aggregate polls in the 2015 Greek referendum. The focus here is on why the polls in aggregate predicted the wrong outcome.