Skip to main content Accessibility help

Perception, as you make it


The main question that Firestone & Scholl (F&S) pose is whether “what and how we see is functionally independent from what and how we think, know, desire, act, and so forth” (sect. 2, para. 1). We synthesize a collection of concerns from an interdisciplinary set of coauthors regarding F&S's assumptions and appeals to intuition, resulting in their treatment of visual perception as context-free.



Hide All
Amaral, D. G., Behniea, H. & Kelly, J. L. (2003) Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience 118(4):1099–120.
Anton-Erxleben, K. & Carrasco, M. (2013) Attentional enhancement of spatial resolution: Linking behavioural and neurophysiological evidence. Nature Reviews Neuroscience 14(3):188200. doi:10.1038/nrn3443.
Bruce, V., Langton, S. & Hill, H. (1999) Complexities of face perception and categorisation. Behavioral and Brain Sciences 22(3):369–70.
Bullier, J. (1999) Visual perception is too fast to be impenetrable to cognition. Behavioral and Brain Sciences 22(3):370.
Carrasco, M. (2011) Visual attention: The past 25 years. Vision Research 51:1484–525.
Cavanagh, P. (1999) The cognitive penetrability of cognition. Behavioral and Brain Sciences 22(3):370–71.
Chua, K. W. & Gauthier, I. (2015) Learned attention in an object-based frame of reference. Journal of Vision 15(12):899–99.
Clavagnier, S., Falchier, A. & Kennedy, H. (2004) Long-distance feedback projections to area V1: Implications for multisensory integration, spatial awareness, and visual consciousness. Cognitive, Affective, and Behavioral Neuroscience 4(2):117–26.
Darwin, C. J. (1997) Auditory grouping. Trends in Cognitive Sciences 1(9):327–33.
David, S. V., Vinje, W. E. & Gallant, J. L. (2004) Natural stimulus statistics alter the receptive field structure of V1 neurons. The Journal of Neuroscience 24(31):69917006.
Dayan, P., Hinton, G. E., Neal, R. & Zemel, R. (1995) The Helmholtz machine. Neural Computation 7(5):889904.
Fodor, J. A. (1983) Modularity of mind: An essay on faculty psychology. MIT Press.
Friston, K (2010) The free-energy principle: A unified brain theory? Nature Reviews Neuroscience 11:127–38.
Gandhi, S. P., Heeger, D. J. & Boynton, G. M. (1999) Spatial attention affects brain activity in human primary visual cortex. Proceedings of the National Academy of Sciences USA 96(6):3314–19.
Gregory, R. L. (1980) Perceptions as hypotheses. Philosophical Transactions of the Royal Society B: Biological Sciences 290(1038):181–97.
Hill, W. E. (1915) My wife and my mother-in-law. Puck Nov. 6, p. 11.
Hupé, J. M., James, A. C., Payne, B. R., Lomber, S. G., Girard, P. & Bullier, J. (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394(6695):784–87.
Jastrow, J. (1899) The mind's eye. Popular Science Monthly 54:299312.
Jordan, J. S. (2013) The wild ways of conscious will: What we do, how we do it, and why it has meaning. Frontiers in Psychology 4:574.
Kapadia, M. K., Ito, M., Gilbert, C. D. & Westheimer, G. (1995) Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys. Neuron 15(4):843–56.
Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R. & Ungerleider, L. G. (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22(4):751–61.
Kastner, S. & Ungerleider, L. G. (2001) The neural basis of biased competition in human visual cortex. Neuropsychologia 39(12):1263–76.
Kveraga, K., Ghuman, A. S. & Bar, M. (2007b) Top-down predictions in the cognitive brain. Brain and Cognition 65(2):145–68.
Lupyan, G. & Spivey, M. J. (2010) Making the invisible visible: Verbal but not visual cues enhance visual detection. PLoS ONE 5(7):e11452.
Markant, J. & Amso, D. (2013) Selective memories: Infants' encoding is enhanced in selection via suppression. Developmental Science 16(6):926–40.
Markant, J. & Amso, D. (2016) The development of selective attention orienting is an agent of change in learning and memory efficacy. Infancy 21(2): 154–76. doi: 10.1111/infa.12100.
Markant, J., Oakes, L. M. & Amso, D. (2015a) Visual selective attention biases contribute to the other-race effect among 9-month-old infants. Developmental Psychobiology 58(3):355–65. doi:10.1002/dev.21375.
Markant, J., Worden, M. S. & Amso, D. (2015b) Not all attention orienting is created equal: Recognition memory is enhanced when attention orienting involves distractor suppression. Neurobiology of Learning and Memory 120:2840.
Motter, B. C. (1993) Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology 70(3):909–19. Available at:
Pylyshyn, Z. (1999) Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences 22(3):341–65.
Rao, R. P. & Ballard, D. H. (1999) Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience 2(1):7987.
Remez, R. E., Pardo, J. S., Piorkowski, R. L. & Rubin, P. E. (2001) On the bistability of sine wave analogues of speech. Psychological Science 12(1):2429.
Roepstorff, A. & Frith, C. (2004) What's at the top in the top-down control of action? Script-sharing and “top-top” control of action in cognitive experiments. Psychological Research 68(2–3):189–98.
Rutman, A. M., Clapp, W. C., Chadick, J. Z. & Gazzaley, A. (2010) Early top–down control of visual processing predicts working memory performance. Journal of Cognitive Neuroscience 22(6):1224–34.
Slotnick, S. D., Schwarzbach, J. & Yantis, S. (2003) Attentional inhibition of visual processing in human striate and extrastriate cortex. NeuroImage 19(4):1602–11.
Spratling, M. W. (2010) Predictive coding as a model of response properties in cortical area V1. The Journal of Neuroscience 30(9):3531–43.
Uncapher, M. R. & Rugg, M. D. (2009) Selecting for memory? The influence of selective attention on the mnemonic binding of contextual information. The Journal of Neuroscience 29(25):8270–79.
Zanto, T. P. & Gazzaley, A. (2009) Neural suppression of irrelevant information underlies optimal working memory performance. The Journal of Neuroscience 29(10):3059–66.
Zhang, P., Jamison, K., Engel, S., He, B. & He, S. (2011) Binocular rivalry requires visual attention. Neuron 71(2):362–69.

Related content

Powered by UNSILO

Perception, as you make it


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.