Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T02:00:25.039Z Has data issue: false hasContentIssue false

Perception, as you make it

Published online by Cambridge University Press:  05 January 2017

David W. Vinson
Affiliation:
Cognitive and Information Sciences, University of California, Merced, Merced, CA 95340dvinson@ucmerced.edudabney@ucmerced.edurdale@ucmerced.eduspivey@ucmerced.edu
Drew H. Abney
Affiliation:
Cognitive and Information Sciences, University of California, Merced, Merced, CA 95340dvinson@ucmerced.edudabney@ucmerced.edurdale@ucmerced.eduspivey@ucmerced.edu
Dima Amso
Affiliation:
Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI 02912dima_amso@brown.edu
Anthony Chemero
Affiliation:
Department of Philosophy and Psychology, University of Cincinnati, Cincinnati, OH 45220chemeray@ucmail.uc.edu
James E. Cutting
Affiliation:
Department of Psychology, Cornell University, Ithaca, NY 14850james.cutting@cornell.edu
Rick Dale
Affiliation:
Cognitive and Information Sciences, University of California, Merced, Merced, CA 95340dvinson@ucmerced.edudabney@ucmerced.edurdale@ucmerced.eduspivey@ucmerced.edu
Jonathan B. Freeman
Affiliation:
Department of Psychology, New York University, New York, NY 10003jon.freeman@nyu.edu
Laurie B. Feldman
Affiliation:
Psychology Department, University of Albany, SUNY, Albany, NY 12222lfeldman@albany.edu
Karl J. Friston
Affiliation:
Wellcome Trust Centre for Neuroimaging, University College London, London WC1E 6BT, United Kingdomk.friston@ucl.ac.uks.ondobaka@ucl.ac.ukdcr@eyethink.org
Shaun Gallagher
Affiliation:
Department of Philosophy, University of Memphis, Memphis, TN 38152s.gallagher@memphis.edu
J. Scott Jordan
Affiliation:
Department of Psychology, Illinois State University, Normal, IL 61761jsjorda@ilstu.edu
Liad Mudrik
Affiliation:
School of Psychological Sciences, Tel Aviv University, Tel Aviv-Yafo, Israelmudrikli@tau.ac.il
Sasha Ondobaka
Affiliation:
Wellcome Trust Centre for Neuroimaging, University College London, London WC1E 6BT, United Kingdomk.friston@ucl.ac.uks.ondobaka@ucl.ac.ukdcr@eyethink.org
Daniel C. Richardson
Affiliation:
Wellcome Trust Centre for Neuroimaging, University College London, London WC1E 6BT, United Kingdomk.friston@ucl.ac.uks.ondobaka@ucl.ac.ukdcr@eyethink.org
Ladan Shams
Affiliation:
Psychology Department, University of California, Los Angeles, Los Angeles, CA 90095lshams@psych.ucla.edu
Maggie Shiffrar
Affiliation:
Office of Research and Graduate Studies, California State University, Northridge, Northridge, CA 91330. mag@csun.edu
Michael J. Spivey
Affiliation:
Cognitive and Information Sciences, University of California, Merced, Merced, CA 95340dvinson@ucmerced.edudabney@ucmerced.edurdale@ucmerced.eduspivey@ucmerced.edu

Abstract

The main question that Firestone & Scholl (F&S) pose is whether “what and how we see is functionally independent from what and how we think, know, desire, act, and so forth” (sect. 2, para. 1). We synthesize a collection of concerns from an interdisciplinary set of coauthors regarding F&S's assumptions and appeals to intuition, resulting in their treatment of visual perception as context-free.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amaral, D. G., Behniea, H. & Kelly, J. L. (2003) Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience 118(4):1099–120.CrossRefGoogle Scholar
Anton-Erxleben, K. & Carrasco, M. (2013) Attentional enhancement of spatial resolution: Linking behavioural and neurophysiological evidence. Nature Reviews Neuroscience 14(3):188200. doi:10.1038/nrn3443.CrossRefGoogle ScholarPubMed
Bruce, V., Langton, S. & Hill, H. (1999) Complexities of face perception and categorisation. Behavioral and Brain Sciences 22(3):369–70.CrossRefGoogle Scholar
Bullier, J. (1999) Visual perception is too fast to be impenetrable to cognition. Behavioral and Brain Sciences 22(3):370.CrossRefGoogle Scholar
Carrasco, M. (2011) Visual attention: The past 25 years. Vision Research 51:1484–525.CrossRefGoogle ScholarPubMed
Cavanagh, P. (1999) The cognitive penetrability of cognition. Behavioral and Brain Sciences 22(3):370–71.CrossRefGoogle Scholar
Chua, K. W. & Gauthier, I. (2015) Learned attention in an object-based frame of reference. Journal of Vision 15(12):899–99.CrossRefGoogle Scholar
Clavagnier, S., Falchier, A. & Kennedy, H. (2004) Long-distance feedback projections to area V1: Implications for multisensory integration, spatial awareness, and visual consciousness. Cognitive, Affective, and Behavioral Neuroscience 4(2):117–26.CrossRefGoogle ScholarPubMed
Darwin, C. J. (1997) Auditory grouping. Trends in Cognitive Sciences 1(9):327–33.CrossRefGoogle ScholarPubMed
David, S. V., Vinje, W. E. & Gallant, J. L. (2004) Natural stimulus statistics alter the receptive field structure of V1 neurons. The Journal of Neuroscience 24(31):69917006.CrossRefGoogle ScholarPubMed
Dayan, P., Hinton, G. E., Neal, R. & Zemel, R. (1995) The Helmholtz machine. Neural Computation 7(5):889904.CrossRefGoogle ScholarPubMed
Fodor, J. A. (1983) Modularity of mind: An essay on faculty psychology. MIT Press.CrossRefGoogle Scholar
Friston, K (2010) The free-energy principle: A unified brain theory? Nature Reviews Neuroscience 11:127–38.CrossRefGoogle ScholarPubMed
Gandhi, S. P., Heeger, D. J. & Boynton, G. M. (1999) Spatial attention affects brain activity in human primary visual cortex. Proceedings of the National Academy of Sciences USA 96(6):3314–19.CrossRefGoogle ScholarPubMed
Gregory, R. L. (1980) Perceptions as hypotheses. Philosophical Transactions of the Royal Society B: Biological Sciences 290(1038):181–97.Google ScholarPubMed
Hill, W. E. (1915) My wife and my mother-in-law. Puck Nov. 6, p. 11.Google Scholar
Hupé, J. M., James, A. C., Payne, B. R., Lomber, S. G., Girard, P. & Bullier, J. (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394(6695):784–87.CrossRefGoogle ScholarPubMed
Jastrow, J. (1899) The mind's eye. Popular Science Monthly 54:299312.Google Scholar
Jordan, J. S. (2013) The wild ways of conscious will: What we do, how we do it, and why it has meaning. Frontiers in Psychology 4:574.CrossRefGoogle Scholar
Kapadia, M. K., Ito, M., Gilbert, C. D. & Westheimer, G. (1995) Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys. Neuron 15(4):843–56.CrossRefGoogle ScholarPubMed
Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R. & Ungerleider, L. G. (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22(4):751–61.CrossRefGoogle ScholarPubMed
Kastner, S. & Ungerleider, L. G. (2001) The neural basis of biased competition in human visual cortex. Neuropsychologia 39(12):1263–76.CrossRefGoogle ScholarPubMed
Kveraga, K., Ghuman, A. S. & Bar, M. (2007b) Top-down predictions in the cognitive brain. Brain and Cognition 65(2):145–68.CrossRefGoogle ScholarPubMed
Lupyan, G. & Spivey, M. J. (2010) Making the invisible visible: Verbal but not visual cues enhance visual detection. PLoS ONE 5(7):e11452.CrossRefGoogle Scholar
Markant, J. & Amso, D. (2013) Selective memories: Infants' encoding is enhanced in selection via suppression. Developmental Science 16(6):926–40.CrossRefGoogle ScholarPubMed
Markant, J. & Amso, D. (2016) The development of selective attention orienting is an agent of change in learning and memory efficacy. Infancy 21(2): 154–76. doi: 10.1111/infa.12100.CrossRefGoogle ScholarPubMed
Markant, J., Oakes, L. M. & Amso, D. (2015a) Visual selective attention biases contribute to the other-race effect among 9-month-old infants. Developmental Psychobiology 58(3):355–65. doi:10.1002/dev.21375.CrossRefGoogle Scholar
Markant, J., Worden, M. S. & Amso, D. (2015b) Not all attention orienting is created equal: Recognition memory is enhanced when attention orienting involves distractor suppression. Neurobiology of Learning and Memory 120:2840.CrossRefGoogle ScholarPubMed
Motter, B. C. (1993) Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology 70(3):909–19. Available at: http://doi.org/0022-3077/93.CrossRefGoogle ScholarPubMed
Pylyshyn, Z. (1999) Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences 22(3):341–65.CrossRefGoogle ScholarPubMed
Rao, R. P. & Ballard, D. H. (1999) Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience 2(1):7987.CrossRefGoogle ScholarPubMed
Remez, R. E., Pardo, J. S., Piorkowski, R. L. & Rubin, P. E. (2001) On the bistability of sine wave analogues of speech. Psychological Science 12(1):2429.CrossRefGoogle ScholarPubMed
Roepstorff, A. & Frith, C. (2004) What's at the top in the top-down control of action? Script-sharing and “top-top” control of action in cognitive experiments. Psychological Research 68(2–3):189–98.CrossRefGoogle ScholarPubMed
Rutman, A. M., Clapp, W. C., Chadick, J. Z. & Gazzaley, A. (2010) Early top–down control of visual processing predicts working memory performance. Journal of Cognitive Neuroscience 22(6):1224–34.CrossRefGoogle ScholarPubMed
Slotnick, S. D., Schwarzbach, J. & Yantis, S. (2003) Attentional inhibition of visual processing in human striate and extrastriate cortex. NeuroImage 19(4):1602–11.CrossRefGoogle ScholarPubMed
Spratling, M. W. (2010) Predictive coding as a model of response properties in cortical area V1. The Journal of Neuroscience 30(9):3531–43.CrossRefGoogle Scholar
Uncapher, M. R. & Rugg, M. D. (2009) Selecting for memory? The influence of selective attention on the mnemonic binding of contextual information. The Journal of Neuroscience 29(25):8270–79.CrossRefGoogle ScholarPubMed
Zanto, T. P. & Gazzaley, A. (2009) Neural suppression of irrelevant information underlies optimal working memory performance. The Journal of Neuroscience 29(10):3059–66.CrossRefGoogle ScholarPubMed
Zhang, P., Jamison, K., Engel, S., He, B. & He, S. (2011) Binocular rivalry requires visual attention. Neuron 71(2):362–69.CrossRefGoogle ScholarPubMed