To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The idea that some abilities might be enhanced by adversity is gaining traction. Adaptation-based approaches have uncovered a few specific abilities enhanced by particular adversity exposures. Yet, for a field to grow, we must not dig too deep, too soon. In this paper, we complement confirmatory research with principled exploration. We draw on two insights from adaptation-based research: 1) enhanced performance manifests within individuals, and 2) reduced and enhanced performance can co-occur. Although commonly assumed, relative performance differences are rarely tested. To quantify them, we need a wide variety of ability measures. However, rather than using adaptive logic to predict which abilities are enhanced or reduced, we develop statistical criteria to identify three data patterns: reduced, enhanced, and intact performance. With these criteria, we analyzed data from the National Institute of Child Health and Human Development Study of Early Child Care and Youth Development to investigate how adversity shapes within-person performance across 10 abilities in a cognitive and achievement battery. Our goals are to document adversity-shaped cognitive performance patterns, identify drivers of reduced performance, identify sets of “intact” abilities, and discover new enhanced abilities. We believe principled exploration with clear criteria can help break new theoretical and empirical ground, remap old territory, and advance theory development.
This research aimed to assess the agronomic performance of the progeny (F3 and F4 generations) of 48 newly developed Aus rice lines, using a randomized-complete-block-design under rainfed conditions. We found a wide range of variations in yield and yield-contributing traits among the studied genotypes. High board sense heritability percentages were found for sterility percentage (99.50 and 97.20), thousand-grain-weight (88.10 and 90.20 g), plant-height (84.90 and 86.90 cm) and day-to-maturity (84.50 and 97.60 d) in both F3 and F4 generations, respectively. However, the highest genetic advance as mean percentage was observed for sterility (48.00 and 50.60), effective tillers number per hill (ET) (44.70 and 47.10), total tillers number per hill (TT) (43.00 and 45.40) and filled-grains per panicle (41.00 and 43.20) respectively. Notably, the correlation study also identified the traits, TT (r = 0.31 and 0.45), ET (r = 0.30 and 0.44), straw yield (r = 0.57 and 0.39) and harvest index (r = 0.63 and 0.67) as effective for improving grain yield in both F3 and F4 generations, respectively. We identified higher grain yield per hill (g) and shorter to moderate crop growth duration (days) in several distinct accessions, including R1-49-7-1-1, R3-26-4-3-1, R1-6-2-3-1, R1-13-1-1-1, R1-50-1-1-1, R3-49-4-3-1, R1-47-7-3-1, R2-26-6-2-2, R3-30-1-2-1 and R1-44-1-2-1, among the 48 genotypes in both the F3 and F4 generations. A further location-specific agronomic study is recommended to assess the drought tolerance of these promising genotypes. This will further assess their suitability as potential breeding materials when developing rice varieties adapted to grow under fluctuating rainfalls conditions.
This brief review describes the discovery of cosmic rays by Victor Hess from the Vienna Radium Institute and the later contribution of Marietta Blau through her observation of “disintegration stars” in photographic emulsion plates exposed to cosmic-ray bombardment. Marietta Blau, a nearly forgotten cosmic-ray pioneer from the Vienna Radium Institute, developed the nuclear emulsion technique for studying nuclear reactions, eventually discovering the disintegration of nuclei through high-energy cosmic rays. Blau survived the Holocaust by escaping to Mexico City from 1939 to 1944. Starting in 1948 at Columbia University, later as a staff member of Brookhaven National Laboratory and then University of Miami, she performed fundamental and original research with nuclear emulsions exposed to 3-GeV protons at the Brookhaven Cosmotron and to 6-GeV protons at the Berkeley Bevatron. Blau returned to Vienna in 1960, where at the Radium Institute a classical β-decay counting facility for radiocarbon dating had been installed, which was finally superseded by the Vienna Environmental Research Accelerator (VERA), a modern versatile accelerator mass spectrometry facility.
This study addresses endogenous factors related to the strategic planning of corporate social responsibility (CSR). Our findings help explain the paradox: If better CSR always leads to better firm performance, why do so many companies either choose not to engage in CSR or act irresponsibly? Managers may make decisions regarding CSR based on the environment. Some companies may be better served through a proactive CSR strategy; however, others may be unable to achieve better performance through this strategy for a variety of endogenous causes. Our sample included 594 U.S. publicly traded companies with 2,019 firm-year observations. We empirically simulated scenarios where companies selected inappropriate CSR strategies and found that the companies were unable to achieve better firm performance if they did not select appropriate CSR strategies based on their internal and external environment. Practical and theoretical implications are discussed.
Use of diverse germplasm for generating heterotic hybrids is the foremost requirement in maize. The present study was conducted by using a diverse set of inbred lines and the line × tester method was applied to identify best performing lines and to group QPM inbred lines into different heterotic groups. The test crosses, developed by following line (66) × tester (CML 161 and CML 165) mating design, were evaluated during winter 2013, rainy 2014 and 2015 seasons at Begusarai and Ludhiana, respectively. Based on the specific combining ability, the lines were categorized into two heterotic groups. Out of 66 novel inbreds, 18 lines with significant SCA with CML165 were classified in group A, 16 inbreds with significant SCA with CML161 were classified in group B and 20 inbreds with significant GCA were classified in group (AB). Nine inbred lines were selected based on their positive GCA values and pedigree crosses were developed in rainy season in 2017. Three crosses were made in heterotic group A and four crosses were in group B for synthesizing new inbred lines by using pedigree method. Heterotic grouping based inbred evaluation trial and biochemical analysis were carried out to estimate per se yield potential of developed lines and to estimate tryptophan content. QIL-4-2491 (Group-A) and QIL-4-2401 (Group-B) were the top yielders. A total of 25 crosses were made among the heterotic groups (A and B) by using 22 lines from groups A and B and three best performing hybrids were identified.
Bilateral teleoperation has witnessed significant development since the mid-20th century, a23ressing challenges related to human presence in environments with constraints or a lack of skilled professionals. This article presents the kinematic and self-collision analyses of the quasi-spherical parallel manipulator, a three-legged parallel robot used as a haptic master device. The device is designed for remote center of motion-constrained operation in the telesurgical field. Inverse and forward kinematics are thoroughly analyzed to study working modes, singular configurations, and implement a haptic control architecture. The research explores the operative and reachable workspaces of the possible working modes, comparing them to find the most suitable one. Results highlight how the addition of the self-collision phenomenon impacts the working mode choice, drastically reducing most of the modes’ operative workspaces. An anti-collision control algorithm is finally introduced to maintain the architecture within its reachable workspace.
The International Criminal Court (ICC) has come under challenge in recent years as some countries have decided, or considered, to withdraw from it. Against this backdrop, an emerging literature has begun to examine attitudes toward the court among the general public as a key court constituency. However, little is known about how domestic elites perceive the court. This research gap is particularly surprising given that domestic elites have a considerable impact on both public and state support of the court. This article explains why political and societal elites across world regions have confidence or lack confidence in the ICC. We present the results from a unique survey of 722 elite respondents conducted from 2017 to 2019 across six countries: Brazil, Germany, the Philippines, Russia, South Africa, and the United States. We furthermore enrich our analysis by using public opinion data to draw comparisons between elites and the general public. The analyses reveal that the views of elites are most consistently related to their perceptions of other, more well-known international organizations and their country’s relationship with the ICC. Our findings indicate both similarities and differences between how elite and public opinion about the ICC are formed, demonstrating the value of further research on elite opinion on international courts.
In the present study we evaluated a core set of 254 cowpea genotypes for seven pod physical traits and shattering score using a modified weighted average screening system based on random impact assessment. There was substantial variability in all the pod physical traits and shattering score in the cowpea core collection indicating significant diversity of the material in respect of pod traits. Shattering score had a mean value of 5.39 with a range of 0–10. Out of 254 genotypes, 34 were resistant, 83 were moderately resistant, 82 were moderately susceptible and 55 were highly susceptible. Shattering score had significant negative correlation with pod length followed by pod weight, pod breadth, seeds per pod, pod wall weight and pod thickness. PCA concentrated 69.60% variability in the first two principal components with Eigen value of 4.49 for PC1 and 1.07 for PC2, mainly contributed by pod weight, pod length, pod breadth, pod thickness and pod wall weight. The conventional screening methods are based on level of shattering and do not take into account various types of shattering such as fissured, split, twisted or abscised. The present was aimed at identification of shattering resistant genotypes using a modified screening method based on weighted level averages. The study identified several genotypes highly resistant to pod shattering that can be used to develop shattering resistant cowpea varieties for sustainable cowpea farming and highlights the effectiveness of proposed screening method.
Contrary to dominant theories of postindustrial society, this article advances an alternative account of digital capitalism that repositions the factory—so often associated with industrial manufacturing—as a defining yet largely overlooked feature of the internet economy. I pursue this claim by interpreting data centers and microwork platforms as digital embodiments of the factory system through a historical theory of the factory model that reconstructs the consistent mechanisms of control and extraction that have distinguished factories as consolidated infrastructures of production since their inception. I define these “protocols of production” as formal rules deployed by a combination of technological systems, spatial arrangements, and management regimes devised to fragment tasks, discipline workers, and supervise production. By probing the socioeconomic consequences of the factory’s algorithmic redeployment and adaptation to global data production, I contend that these absent factories have amplified alienation and precarity as structural social qualities of the digital labor process.
Let V be a finite dimensional vector space over the field with p elements, where p is a prime number. Given arbitrary $\alpha ,\beta \in \mathrm {GL}(V)$, we consider the semidirect products $V\rtimes \langle \alpha \rangle $ and $V\rtimes \langle \beta \rangle $, and show that if $V\rtimes \langle \alpha \rangle $ and $V\rtimes \langle \beta \rangle $ are isomorphic, then $\alpha $ must be similar to a power of $\beta $ that generates the same subgroup as $\beta $; that is, if H and K are cyclic subgroups of $\mathrm {GL}(V)$ such that $V\rtimes H\cong V\rtimes K$, then H and K must be conjugate subgroups of $\mathrm {GL}(V)$. If we remove the cyclic condition, there exist examples of nonisomorphic, let alone nonconjugate, subgroups H and K of $\mathrm {GL}(V)$ such that $V\rtimes H\cong V\rtimes K$. Even if we require that noncyclic subgroups H and K of $\mathrm {GL}(V)$ be abelian, we may still have $V\rtimes H\cong V\rtimes K$ with H and K nonconjugate in $\mathrm {GL}(V)$, but in this case, H and K must at least be isomorphic. If we replace V by a free module U over ${\mathbb {Z}}/p^m{\mathbb {Z}}$ of finite rank, with $m>1$, it may happen that $U\rtimes H\cong U\rtimes K$ for nonconjugate cyclic subgroups of $\mathrm {GL}(U)$. If we completely abandon our requirements on V, a sufficient criterion is given for a finite group G to admit nonconjugate cyclic subgroups H and K of $\mathrm {Aut}(G)$ such that $G\rtimes H\cong G\rtimes K$. This criterion is satisfied by many groups.
This article is devoted to the control of bio-inspired robots that are underactuated. These robots are composed of tensegrity joints remotely actuated with cables, which mimic the musculoskeletal system of the bird neck. A computed torque control (CTC) is applied to these robots as well as an original control called pseudo computed torque control (PCTC). This new control uses the dynamics and the pseudo-inverse of the Jacobian matrix. The stability of the two proposed controls is then analyzed through linearization of the dynamic model and expression of the closed-loop transfer function in the Laplace domain. We show that, depending on the desired trajectory, the CTC can be unstable when the controlled variables are the end effector position and orientation. For a robot with many joints and a limited number of cables, the CTC is always unstable. Instead, the PCTC shows a large domain of stability. The analysis is complemented by experimental tests demonstrating that the CTC and PCTC exhibit similar performance when the CTC is stable. Furthermore, the PCTC maintains stability on trajectories where the CTC becomes unstable, showing robustness to perturbations as well.
Instead of being merely a historical occurrence, colonization is a structural feature of civilizations that have been touched by colonialism, which affects the prospects for the colonial subjects. This process is still ongoing in various forms among the so-called postcolonial societies today. Therefore, decolonization is a response to both the negative stereotypes and falsehoods about Indigenous peoples and cultures as well as the structural injustices of colonially impacted society that disproportionately afflict Indigenous peoples. Even though decolonization is a hot issue in academia right now, Indigenous peoples have been fighting against colonialism for millennia and claiming their own spaces, sovereignty, and right to self-determination ever since they first came into contact with colonizers.
Power at Work: A Global Perspective on Control and Resistance, edited by Marcel van der Linden and Nicole Mayer-Ahuja, marks an important moment in the trajectory of labour history over the last half century. Writings on labour have seen a shift from a focus on institutional history to social history in the 1960s, to the cultural and linguistic turn of the 1980s, and, over the last decade or so, a move to reclaim the material in new ways.1 In the 1970s, the labour process and shopfloor politics was an important theme in writings on labour – Marxist and non-Marxist – but these were often framed in reductive and teleological narratives derived from the experience of the Global North.2 Recent writings demonstrate a renewed interest in workplace politics from fresh perspectives that look at the relationship between the production process and cultural transformation in complex ways.
Energy efficiency is inherent for autonomous robotic device. Snakes are well known for their ability to low energy consumption when swimming. However, the swimming know-how is poorly understood. Designing a snake robot inspired by snakes as a tool to find out the swimming energy efficiency crucial point will lead to the development of hyper efficient undulating locomotors. In this article, we introduce a four tendons driven continuum robot made of bio-inspired compliant vertebrae to assess the energy consumption of a planar and a spatial snake motion. The tendon-driven continuum robot constitutes the head–neck part of a locomotor snake robot. A static modeling coupled with an optimization method was implemented to generate bio-inspired motions recorded on snake swimming head. A friction model describing the friction between cables and the disks is investigated and compared to a frictionless model. The proposed prototype is equipped with exteroceptive sensors to record motion and proprioceptive sensors to measure cable forces applied at the tip of the robot. Hence, the work of the forces, thus the energy required to execute a trajectory are computed and analyzed. The energy is introduced as a key criterion to assess the swimming motion of a locomotor snake robot.
Given the varying degrees of importance that a holy place holds for different parties and the variety of laws used to regulate them, laws pertaining to holy places integrate a broad array of legal, political, social, religious, and economic interests. Acknowledging the difficulty of capturing a singular standard of protection merits examining different existing modalities to discern the means of protection for holy places.
A 2022 Israeli District Court case concerning ownership rights over a Russian Orthodox church in the Old City of Jerusalem shall provide the platform for scrutinizing the relevant laws and variety of interests at play for holy places in Israel, providing insights into the importance of accounting for divergent interests in the cultural heritage protection milieu. This article shall highlight the approaches used towards holy place protection in a difficult and complex context, Israel, to better understand heritage protection methods for unique or significant cultural sites in other regions.
Conservation agriculture plays an important role in the sustainability of production systems, notably for globally significant crops such as cotton. This study explores the integration of the no-tillage system (NTS) with integrated pest management (IPM) by incorporating cover crops. The aim is to assess the impact of these living or dead covers on the management of insect populations, the indices diversity of phytophagous insects and natural enemies, and to investigate the population fluctuation of these arthropods, considering a variety of crops in the NTS before and after cotton planting. The trial, conducted over two consecutive cropping seasons in Mato Grosso do Sul State, Brazil, employed a randomised block design with four repetitions. The treatments included cover crops with the highest potential for use in the region, such as millet (Pennisetum glaucum glaucum L.), corn (Zea mays L.), brachiaria (Urochloa ruziziensis), black velvet bean (Stizolobium aterrimum), forage sorghum (Sorghum bicolor L.), and white oats (Avena sativa L.) and a mix of white oats with brachiaria. The results indicated that the black velvet bean stands out as the most effective cover crop, providing the best performance in terms of non-preference to the attack of the evaluated pest insects. Conversely, brachiaria proves to be more susceptible to infestations of Dalbulus maidis (DeLong and Wolcott) (Hemiptera: Cicadellidae), and Diabrotica speciosa (Germar, 1824) (Coleoptera: Chrysomelidae). The study underscores the relevance of the judicious choice of cover crops in IPM and in promoting agricultural biodiversity, creating a strategic tool to enhance the sustainability and efficiency of the cotton production system in the context of the NTS.
Six different types of Majiang bronze drums from Hechi City, Guangxi, China were collected from the Guangxi Museum to characterize the original scheme of polychromy and materials used for the drums. The composition of all the samples were determined by using scanning electron microscopy with energy-dispersive X-ray spectroscopy. All the bronze drums contain mainly Cu, Sn, Pb, and As. Qualitative analysis of the structure by X-ray powder diffraction indicates that each of the six bronze drums contains four or five phases, namely (Cu, As), Pb, Cu3Sn, and Cu10Sn3 or Cu, Pb, As0.2Cu1.8, Cu3Sn, and Cu10Sn3. The Rietveld structural refinement is performed first time for the quantitative analysis of ancient bronze drums and inorganic cultural relics. This paper reports the result.
Global warming is exposing many organisms to severe thermal conditions and is having impacts at multiple levels of biological organisation, from individuals to species and beyond. Biotic and abiotic factors can influence organismal thermal tolerance, shaping responses to climate change. In eusocial ants, thermal tolerance can be measured at the colony level (among workers within colonies), the population level (among colonies within species), and the community level (among species). We analysed critical thermal maxima (CTmax) across these three levels for ants in a semiarid region of northeastern Brazil. We examined the individual and combined effects of phylogeny, body size (BS), and nesting microhabitat on community-level CTmax and the individual effects of BS on population- and colony-level CTmax. We sampled 1864 workers from 99 ant colonies across 47 species, for which we characterised CTmax, nesting microhabitat, BS, and phylogenetic history. Among species, CTmax ranged from 39.3 to 49.7°C, and community-level differences were best explained by phylogeny and BS. For more than half of the species, CTmax differed significantly among colonies in a way that was not explained by BS. Notably, there was almost as much variability in CTmax within colonies as within the entire community. Monomorphic and polymorphic species exhibited similar levels of CTmax variability within colonies, a pattern not always explained by BS. This vital intra- and inter-colony variability in thermal tolerance is likely allows tropical ant species to better cope with climate change. Our results underscore why ecological research must examine multiple levels of biological organisation.