To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Evaporation of multicomponent droplets is important, albeit complex, in a wide range of applications, and requires a careful investigation. We investigate experimentally and numerically the evaporation characteristics of spherical, ethanol–water droplets with different initial concentration ratios in the acoustic levitation field. Imaging techniques and infrared thermometry are used for acquiring volume and surface temperature variations of droplets, reflecting their mass and heat transfer characteristics. Numerical simulations are conducted using modified parameters based on a theoretical model to consider the effect of the acoustic field. The calculation results show good agreement with the experimental data. The concentration and temperature distribution within the droplet is further investigated based on the numerical results.
We explore when the silting-discreteness is inherited. As a result, one obtains that taking idempotent truncations and homological epimorphisms of algebras transmit the silting-discreteness. We also study classification of silting-discrete simply-connected tensor algebras and silting-indiscrete self-injective Nakayama algebras. This paper contains two appendices; one states that every derived-discrete algebra is silting-discrete, and the other is about triangulated categories whose silting objects are tilting.
Ausgehend von der kulturwissenschaftlichen Forschung zu Familienalben und deren Gemeinsamkeiten mit dem Neuen Testament lädt dieser Beitrag dazu ein, darüber nachzudenken, was sich verändert, wenn wir die Fragen der Einführung in das Neue Testament durch die Brille der Theorie des sozialen Gedächtnisses betrachten. Aufbauend auf Forschungsergebnissen der Oral History und kulturwissenschaftlichen Gedächtnistheorie wird argumentiert, dass die allgemeine Einleitung in den Bereich des kulturellen Gedächtnisses und die spezielle Einleitung in den Bereich des sozialen/kollektiven Gedächtnisses fällt. Beide sind durch den Floating Gap getrennt, was die vielfach wahrgenommenen Veränderungen in der ersten Hälfte des zweiten Jahrhunderts erklärt. Im nächsten Schritt wird ein Modell, das auf dem Dreigenerationengedächtnis, der Generational Gap (nach einer Generation), der Floating Gap (nach 3-4 Generationen) und den ersten Generationen von Jesus-Anhängern aufbaut, mit Vorschlägen zur Datierung neutestamentlicher Bücher aus der Einleitungswissenschaft ins Gespräch gebracht. Es zeigt sich, dass die vor und nach dem Generational Gap verwendeten Genres je unterschiedliche Eigenschaften haben, die den Erwartungen an Medien des sozialen und kollektiven Gedächtnisses entsprechen. Der Beitrag schließt mit allgemeinen Fragen zu Medien und Medienwandel im Neuen Testament, d.h. Mündlichkeit und Schriftlichkeit, identische Texte und Textkritik, dem Kanon als primärem Kontext, der Ausweitung des Geltungsbereichs sowie fluiden Gattungen, und kommt zu dem Schluss, dass kulturwissenschaftliche Gedächtnistheorie in der Tat neue Perspektiven für die Einleitungswissenschaft bietet.
As a field of practice, international human rights law (IHRL) is in constant motion. The four books under review explore the legal, political, and civic dynamics that continuously shape and reshape this vibrant area of law. In this Essay, I underscore two important trends in contemporary IHRL scholarship that these books highlight. First, these works share a strong emphasis on agency, understood as human action that makes a difference in the world, be it the agency of individuals, domestic civil society organizations, transnational organizations, or courts. Highlighting agency, rather than overarching political, economic, and social structures, in turn shifts the attention from human rights law and doctrine “in the books” to an understanding of human rights law as a purposive and dynamic practice.
The game of Cops and Robber is usually played on a graph, where a group of cops attempt to catch a robber moving along the edges of the graph. The cop number of a graph is the minimum number of cops required to win the game. An important conjecture in this area, due to Meyniel, states that the cop number of an n-vertex connected graph is $O(\sqrt {n})$. In 2016, Prałat and Wormald showed that this conjecture holds with high probability for random graphs above the connectedness threshold. Moreover, Łuczak and Prałat showed that on a $\log $-scale the cop number demonstrates a surprising zigzag behavior in dense regimes of the binomial random graph $G(n,p)$. In this paper, we consider the game of Cops and Robber on a hypergraph, where the players move along hyperedges instead of edges. We show that with high probability the cop number of the k-uniform binomial random hypergraph $G^k(n,p)$ is $O\left (\sqrt {\frac {n}{k}}\, \log n \right )$ for a broad range of parameters p and k and that on a $\log $-scale our upper bound on the cop number arises as the minimum of two complementary zigzag curves, as opposed to the case of $G(n,p)$. Furthermore, we conjecture that the cop number of a connected k-uniform hypergraph on n vertices is $O\left (\sqrt {\frac {n}{k}}\,\right )$.