To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Titanium dioxide (TiO2, rutile) nanoparticles, inorganic ultraviolet absorbers, are used extensively in sunscreen cosmetics as an inorganic ultraviolet (UV) absorber to prevent skin damage; because of their nanotoxicity, use in combination with a support, such as montmorillonite (Mnt), rather than alone, is suggested. Mnt-supported TiO2 composites (Mnt-TiO2) for sunscreens are most suitable when the particles are spherical and of relatively uniform size, which are normally accomplished by spray drying, but this is difficult to achieve because of the naturally layered structure of Mnt. The objective of the present study was, therefore, to find the ideal characteristics of spray-drying nozzles to produce the desired spherical shape and size distribution of the Mnt-TiO2 composite particles. The starting Mnt was extracted from natural bentonite by particle-size separation. An ultrasonic nozzle in the spray dryer was selected for use in the synthesis of Mnt-TiO2 composites based on the particle-size distribution (PSD) of Mnt prepared using a two-fluid nozzle and an ultrasonic nozzle at 453 K. The incorporation of TiO2 in the final Mnt-TiO2 composites was examined by X-ray powder diffraction (XRD) and elemental analysis. With increasing TiO2 concentration, the TiO2 content and average particle size of the Mnt-TiO2 composites increased. Scanning electron microscopy (SEM) images showed that all samples prepared had uniform and nearly spherical shapes. Absorbance of UV by Mnt-TiO2 (5:1) composites was greater than that by either purified Mnts or pure TiO2. The present study demonstrated a simple method, using a spray dryer with an ultrasonic nozzle, to synthesize Mnt-TiO2 composites of uniform size and shape suitable for cosmetic application.
Organotalcs, in which organic moieties are covalently bonded to Si atoms belonging to the tetrahedral sheets, are usually prepared by a sol-gel process starting from ethanolic solution of Mg nitrate, organo-alcoxysilanes, and aqueous sodium hydroxide solution. In this case, gypsum-like particles are obtained. In this work, evaporation-induced self-assembly within aerosols was used for the first time in order to prepare organotalc spheres. These hybrid lamellar materials can be used as environmental barriers, as polymer fillers, and as catalytic supports. Using octyltriethoxysilane as a source of Si, spherical particles with sizes ranging from 20 nm to 1 µm are obtained. X-ray diffraction and transmission electron microscopy images show that the d001 value equals 2.8 nm meaning that, in this case, organic moities are either alternatively distributed or identically tilted in the interlayer space. Compared to the classical synthesis at room temperature or in autoclaves, and besides being a continuous process, the reaction time is reduced to several minutes instead of hours. Homogeneous forms are obtained by aerosol whereas irregular shapes are obtained in the classical synthesis.
An O2 oxidation and freeze-dry procedure has been used to synthesize birnessite through the oxidation of Mn2+ in alkali media. The effects of O2 flow rate, the fluxion velocity of reaction suspension, the reaction temperature, pretreatment the reaction solutions with N2, and the hydration conditions on the purity of birnessite, the crystallinity, the ion-exchange properties, and the phase transformation of intermediate phases were examined. Buserite with a 1 nm basal spacing, produced after the oxidation, is transformed to 0.7 nm Na birnessite by complete freeze drying. Increasing the fluxion velocity of the reaction suspension and the O2 flow rate facilitated oxidation of Mn(OH)2. Prephase I (a phase related to hausmannite, γ-Mn3O4 (Luo and Suib, 1997; Luo et al., 1998), and feitknechtite (β-MnOOH) were formed as intermediates during the synthesis. Mechanical stirring was used to change the fluxion velocity of the reactive suspension. When the speed of stirring and the O2 flow rate were raised to 250 rpm and 3.0 L/min, respectively, or 450 rpm and 2.0 L/min, respectively, birnessite was the only phase in the final product. Irrespective of temperature in other reactions, pure birnessite was synthesized as long as the temperature during the initial mixing of the reaction solutions was maintained below 10°C. Increasing the reaction temperature led to a larger crystal size, better crystallinity and lower surface area. The pretreatment of solutions with N2 or O2 had little effect on the synthesis; synthesized birnessites had the same purity (100%) as, and similar crystallinity to, that of the no-pretreatment control. Dehydration of the buserite by freeze drying and heating at 60°C did not affect the production of birnessite; however, the latter caused partial loss of ion-exchange capacity with Mg2+. The pathways of the birnessite formation in this study might be:
(1) Mn(OH)2 (amorphous) → feitknechtite → buserite → birnessite, and
Mn(OH)2 existed in an X-ray amorphous state, not in the form of ‘pyrochroite’, during the synthesis.
The adopted conditions for synthesis of pure birnessite were NaOH to Mn molar ratio of 13.7, O2 flow rate of 2 L/min and oxidation for 5 h during vigorous stirring at 450 rpm at room temperature. The birnessite synthesized had a hexagonal platy morphology with good crystallinity, an average composition of Na0.25MnO2.07.0.66H2O, and a surface area of 38 m2/g.
Infrared analyses of clay mineral samples are usually performed by transmission techniques. While transmission measurements are easy and inexpensive, the sample preparation plays a critical role in the quality of the data. Alternatively, attenuated total reflection (ATR) provides a powerful and often simpler analysis method. However, the ATR spectra reveal significant differences when compared to transmission spectra sometimes leading to confusion in the interpretations. Indeed, optical effects play a prominent role in the ATR spectral profile and their identification is mandatory for obtaining quantitative information regarding molecular/particle orientation or film thickness. The objective of the present study was to perform exact spectral simulations of montmorillonite films by making use of optical theory, including the determination of the anisotropic optical constants from the experimental reflectance spectra by Kramers-Kronig (KK) transformation. This methodology was used: (1) to choose the appropriate optical conditions for advanced and reliable characterization of clay minerals; (2) to extract quantitative information such as the estimation of the film thickness; and (3) to discriminate optical phenomena (optical interferences) from chemical/structural features of the sample.
The influence of anionic dispersing agents, such as sodium poly(acrylic acid), sodium hexametaphosphate, and sodium silicate on the dissolution of crude kaolin was examined by measuring the dissolved metals produced in the absence and presence of dispersing agents. For this purpose, the rheological and structural changes caused by the dissolution of kaolin metal constituents were studied in batch mode using several parameters, namely, solids (wt.%), pH, contact time (aging), and dispersing agent dose. A noteworthy increase in kaolin dissolution was caused by the presence of dispersing agents, particularly poly(acrylic acid) and sodium hexametaphosphate. These agents produced conspicuously large amounts of dissolved Al in comparison to the other experimental treatments. Little dissolved Si was measured under similar conditions in distilled water, but the amount of Si released using dispersing agents was nearly double that observed in distilled water only. Excess dispersing agents interacted with kaolin and dissolved accessory elements in the kaolin (i.e. Fe, Ca, Mg) and thus released enough Fe to form a stable Fe—dispersant complex. The present study showed that this phenomenon also contributed to a significant increase in the release of dissolved Al and Si through complexation.
Several Al-substituted goethites were synthesized by hydrolysis of Fe3+ salt solutions. The kinetics of the reductive dissolution of these goethites in dithionite-ethylenediaminetetra acetic acid (D-EDTA) was studied at pH 5.5, at 303, 323 and 333 K. The initial dissolution rate (R) per unit of surface area decreases with Al substitution. In the sample with greater Al content (G″7), the kinetic profiles of the dissolved Fe fraction vs. time gave a small positive intercept. The kinetic profile of R as a function of EDTA initial concentration shows a significant weakening in the presence of Al. The maximum is flatter and wider in Al-substituted goethite than that of pure goethite. In sample G″7, where the Al content is 11.3 mol.% the maximum is obtained when the [D]:[EDTA] initial ratio is ∼4.5 vs. 2 in un-substituted goethite. These results can be attributed to the lesser density of the more active dimeric sites, the presence of more strongly bonded Al-O-Fe with regard to Fe-O and the small value for the ≡ Al-EDTA surface species constant. Activation energy (Ea) increases with Al substitution. Its value is doubled from GO (pure goethite) to G″7 (11.3 mol.% of Al). The frequency factor (A) acts in the opposite sense to Ea, but it is not sufficient to outweigh the effect of Ea.
Bentonite is considered as an ideal buffer/backfill material for preparing an engineering barrier for high-level radioactive waste (HLW) disposal. During initial sample preparation, the tendency of wet bentonite powder to gather into large agglomerates and the water to be spread unevenly in the traditional water content adjustment process decreases the homogeneity of compacted bentonite. The main purpose of this study was to solve this problem by applying a new wetting method, which mixes ice powder with bentonite powder (the ice-bentonite mixing method). This new method was used to adjust the water distribution in Gaomiaozi County, China (GMZ) bentonite powder and was compared to the traditional spray method. The screening method was used to separate macro-agglomerates (≥ 0.25 mm) from the water and bentonite mixture. The properties, the content of the various size agglomerates in loose mixtures, and the heterogeneity defects observed in compacted bentonite were compared. An index (P) was defined to quantitatively evaluate the water distribution in a loose bentonite/water mixture. Macro-agglomerates in loose mixtures produced heterogeneities in water content, density, and shrinkage. By using the ice-bentonite mixing method, fewer macro-agglomerates were formed and a homogeneous distribution of water was produced in the compacted bentonite. A homogeneous water distribution had the tendency to decrease the number of shrinkage cracks after the drying process and to maintain high mechanical strength in the compacted bentonite. Although the production of ice powder was laborious, the ice-bentonite mixing method has workability advantages: (i) a high mixing efficiency, (ii) a low mass loss rate, and (iii) a small deviation between measured water content and target water content. The low thawing efficiency of ice-bentonite mixtures can be solved by using a microwave-assisted thawing method. This research can improve the sample preparation method used to produce compacted buffer/backfill materials for HLW disposal.
We report infrared spectroscopic observations of the incorporation of CO2 into pyrophyllite that has been heated between 200°C and 1250°C for periods of 15 min, 1 h and 5 days. The presence of CO2 is characterized by the ν3 band of CO2 near 2347 cm−1, detectable in samples in which dehydroxylation has commenced after heating above 450°C. With increasing temperature, the CO2 signal becomes more intense. The signal reaches its maximum intensity near 800°C with an annealing time of 15 min. Further heating leads to a decrease in the CO2 signal and the occurrence of an extra signal near 2156 cm−1 that implies the presence of CO. The process is characterized by significant time-dependence, indicating its kinetic nature. The peak positions of CO2 signals show systematic variations with temperature. Our results suggest that the CO2 molecule is associated with the local structure rather than being present as free gaseous CO2, and that the local structure of pyrophyllite is gradually modified during high-temperature treatments. However, no signals related to carbonate molecules () were detected. The results suggest that CO2 or other carbon-based molecules may diffuse into some clay minerals during dehydroxylation and may become altered due to structural modifications at high temperatures. This may have significance for possible CO2 sequestration in shales and clay formations.
The aim of this work was to study the influence of tannate concentration (tannic acid/Al molar ratio [R] of 0.01–0.1), pH (5.0 and 8.0), order of aluminum, hydroxyl, and tannate addition, and prolonged ageing at different temperatures (10 months at 50°C and 5 y at room temperature and further ageing for 3–15 days at 140°C) on the nature and crystallinity of synthetic boehmite. Tannate facilitated the formation of boehmite relative to Al(OH)3 polymorphs when coprecipitated with Al and also when added to Al(OH)x phases already formed at pH 4.5 or 8.0. However, the organic ligand was more effective in preventing or perturbing the growth of the crystals of boehmite when coprecipitated with Al than when added to soluble Al(OH)x species or preformed Al precipitates. Boehmite aged at temperatures ⩽50°C typically showed a fibrous morphology. Crystals with a rhombic habit were observed in some treatments after ageing at 140°C. Significant amounts (15–30% C) of tannate were present in the precipitates after prolonged ageing. This tannate was only partly (<50%) oxidized by repeated treatments with H2O2. With further ageing at 140°C, the crystallite size of selected samples increased only slightly, suggesting that much of the remaining tannate was present in the internal structure of these samples and not simply adsorbed to their surfaces. Atomic force microscopy observation showed the presence of globular nanoparticles (probably Al tannate precipitates) attached to the elongated crystals of boehmite. Taken together, our results demonstrate that the crystalline phases that formed under mild conditions in the presence of low concentrations (R = 0.01) of foreign ligands have the same structure as boehmite, but with a poorly ordered and defective ion arrangement. At higher ligand concentrations (R ⩾0.05), mixtures of materials are formed having varying degrees of order, particle size and morphology.
To mark the passing of two decades since the Judicial Committee of the House of Lords handed down their judgment in the appeal of Aston Cantlow and Wilmcote with Billesley Parochial Church Council v Wallbank this article considers the enduring impact of the decision in terms of the constitutional position of the Church of England as a national church and analyses the public and private functions which it undertakes. In the altered landscape of the new Carolean era, with a decline in church attendance and a rise in secularism, it examines the reasoning of the five separate opinions delivered by the Law Lords and evaluates in retrospect various of the issues raised.
One montmorillonite, STx-1 (Texas, USA), was activated with different amounts of Al and tetramethylammonium (TMA+) cations to obtain materials with a combined Al3+ and TMA+ content equal to its cation exchange capacity. The adsorption capacity of these samples was studied saturating them with hept-1-ene at room temperature. The samples were heated and the evolved gases analyzed by Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. Hept-1-ene reacted with the clays via proton transfer and resulted in the formation of a variety of reaction products (>60 hydrocarbons). In general, the presence of TMA+ cations significantly reduced the population of protons to selectively produce isomerization and hydration products.
Al-rich K-dioctahedral 1M and 1Md micas are abundant in sedimentary rocks and form a continuous compositional series from (Mg,Fe)-poor illite to aluminoceladonite through Mg-rich illite. The complexity and heterogeneity of chemical composition and structural features, as well as the lack of reliable diagnostic criteria, complicate the identification of these mica varieties. The objectives of the present study were to reveal the structural and crystal-chemical variability in the illite—aluminoceladonite series, and to define the composition ranges and identification criteria for the mica varieties in the series. A collection of illite and aluminoceladonite samples of various compositions was studied by X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy. Analysis of the relationships between unit-cell parameters and cation composition showed that the series includes three groups, (Mg,Fe)-poor illites, Mg-rich illites, and aluminoceladonites, each characterized by a unique combination of unit-cell parameter variation ranges. The distinctive features of aluminoceladonite are reduced values of csinβ and |ccosβ/a| in combination with b parameters that are smaller than those for Mg-rich illites, and slightly greater than those of (Mg,Fe)-poor illites. The compositional boundary between illite and aluminoceladonite occurs at Si = ~3.7 and Mg + Fe2+ = ~ 0.6 atoms per O10(OH)2.
A new approach to the interpretation of the FTIR spectroscopy data involving new relationships between band positons and cation composition of (Mg,Fe)-poor illites, Mg-rich illites, and aluminoceladonites provides additional diagnostic features that include the band positions and profile in the regions of Si—O bending, Si—O stretching, and OH-stretching vibrations. A sharp maximum from the AlOHMg stretching vibration at ~3600 cm−1, the presence of a MgOHMg stretching vibration at 3583–3585 cm−1, as well as characteristic band positions in the Si—O bending (435–, 468–472, and 509–520 cm−1) and stretching regions (985–1012 and 1090–1112 cm−1), are typical of aluminoceladonite.
The rheological properties of sepiolite gels in relation to solution chemistry, fiber charge, and microstructure are poorly understood. The purpose of this study was to bring more clarity to this topic by quantifying the effects of solution pH, ionic strength, and adsorbed tetrasodium pyrophosphate (TSPP) additive on rheological properties. The electrical charge on sepiolite fibers was investigated to explain the fiber interaction configuration observed in the microstructure. Fiber interaction forces and dynamics explained the ageing behavior of the gel. Sepiolite gels of only a few percent solids displayed long-time ageing behavior, which was manifested by an increasing yield stress with wait time and continued for weeks. The gel microstructure showed randomly orientated rigid fibers with cross configuration attraction. Each fiber experiences both attractive (van der Waals and heterogeneous charge) and repulsive (electric double layer) forces, and initially a net force. The repulsive force causes these fibers to orientate or move continually to achieve a state of force equilibrium and this process takes a long time. The Leong model describes this ageing behavior. For good fiber separation, high intensity probe sonication of the suspension was required. The yield stress increased with sonication time, solids loading, and temperature. The yield stress was absent at pH > 11 and increased to a maximum value at pH < 8. This maximum was insensitive to pH between 4 to 8, and ionic strength up to 1 M KCl. TSPP reduced this maximum and shifted the zero yield stress region to a lower pH, ~7. The zero yield stress state corresponded to a zeta potential with a minimum magnitude of 30 mV.