To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hydrotalcite minerals are layered double hydroxides (LDH) which play an important role in immobilizing hazardous compounds to decontaminate industrial wastewaters. The stability of an LDH is mostly evaluated in terms of its low solubility in water. However, the solubility of divalent trace metals immobilized by Mg-Al-type LDHs is not well known. Hydrotalcites containing Zn in solid solution, (Mg+Zn)3-Al-LDH, were synthesized by alkaline co-precipitation. A series of eleven LDH phases with Zn mole fractions XZn = Zn/(Mg+Zn) of 0–1 were characterized by powder X-ray diffractometry (XRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetry (TGA), scanning and transmission electron microscopy (SEM/TEM), Brunauer-Emmett-Teller (BET) surface area analysis, and inductively coupled plasma mass (ICP-MS) spectrometry. The XRD analysis provided sharp characteristic spacings for d003 and d006 which occurred for all samples, confirming a layered LDH structure. Cell parameters (a, c) obeyed Vegard’s law and confirmed the formation of a regular solid-solution series without a mixing gap. An aqueous equilibrium time was determined by kinetic dissolution experiments. Steady-state solubility occurred after 120 days, but the experiments continued up to 240 days. The XRD and SEM/TEM analyses indicated no phase changes during the long-term dissolution experiments; neither were phase impurities detected after 240 days. The solubility products of the Mg- and Zn-bearing endmember compositions were calculated from experimentally determined total cation and anion concentrations using the Visual Minteq code for considering element speciation and ion pairing. The solubility product decreased as the Zn mole fraction increased, suggesting that the Zn-bearing LDH phases were more stable than the pure Mg3-Al-LDHs. Solid-solution aqueous-solution thermodynamic equilibrium modeling using the Lippmann “total solubility product” approach and applying Lippmann diagrams with logarithmic x-axes revealed a log-linear decrease in aqueous Zn solubility. The results are promising for remediation of metal-bearing liquid wastes because the metals that co-precipitated with the LDH were more strongly retained and, therefore, less soluble than the hydroxides or carbonates of the trace metal.
On November 22, 1981, thousands of laypeople, along with bishops, priests, and theologians, gathered in Recife to celebrate the Eucharist. Offered during a military dictatorship in a period of popular insurgency, the Quilombos Mass mourned the death of millions in the African slave trade, sought pardon for the Church's past sins, and celebrated the resistance of Blacks in Brazil and beyond its borders. The acclaimed Black Brazilian pop star and activist Milton de Nascimento collaborated with an activist poet and three bishops to produce a multimedia performance; in the spirit of liberation theology, it was marked by striking visuals, dance, music, and the invocation of the sacred. This article draws on reportage, speeches and correspondence, military court and intelligence records, published interviews, and the author's interview with one of its composers. It offers a close textual analysis, with attention to Catholic theological debates, as well as an analysis of the performance itself, drawn from video recordings and bringing attention to aspects neglected by most commentators, who refer only to the album, as it was finally produced. Initially stifled by the Vatican, Milton's masterpiece, issued as an album on vinyl and performed in paid concerts, became a powerful cultural reference for activists, serving as a touchstone for a strategic alliance between Black activists and the liberationist Church.
Bentonite cake is usually formed on the excavated trench surface that is supported by the bentonite slurry during construction of slurry cutoff walls. The lower hydraulic conductivity of bentonite cakes formed during construction of slurry cutoff walls in comparison to backfill materials provides an additional benefit. In the present study, the hydraulic conductivities of bentonite cakes made using three different bentonites were estimated using the modified fluid-loss test under various pressures. Both the hydraulic conductivities of bentonite cakes and cutoff-wall backfill are important in evaluating the in situ hydraulic performance of slurry cutoff-wall construction. Three bentonite slurry concentrations of 4, 6, and 8% were used to fabricate bentonite cakes that represent common field conditions. X-ray diffraction, cation exchange capacity, and swell-index data were collected to characterize the bentonites. Two modified methods for analyzing fluid-loss test results were used to estimate bentonite cake hydraulic conductivities. In addition, the viscosity as a function of time was measured to explain the sealing capacities of the bentonite slurries. The bentonite-cake hydraulic conductivities ranged from 2.15×10−11 m/s to 2.88×10−10 m/s, which were 10 to 500 times lower than the cutoff wall backfill design. Experimental results for 4 and 6% bentonite slurries were relatively similar, but the 8% slurries were noticeably different. Calculated bentonite-cake thickness and stress distribution indicated that the local void ratio and hydraulic conductivity may vary across the cake thickness. The considerably lower bentonite-cake hydraulic conductivities compared to the cutoff wall backfill design show its significance in slurry cutoff-wall construction practices.
In the 1820s it was predominantly Black abolitionists who opposed gradualist abolitionism and the concept of colonization, while, in general, White abolitionists opposed slavery, viewing it as seductive or as sin in itself, but did not want full emancipation for Blacks. Therefore, David Walker’s Appeal from 1829 is a central document in that it calls for immediate and full emancipation as well as opposition to racism and White supremacy. This article argues that the shift in political aim of Black radical abolitionists correlates with an innovation in theological foundation. Walker grounds his quest for immediate and full emancipation in an egalitarian concept of imago Dei. It is this theological foundation that became influential in radical abolitionist discourse and was employed by Maria M. Stewart as well as William Lloyd Garrison. As a result of research on Walker’s theological innovation, it comes to the fore that he most likely was influenced by Black Freemasonry, especially Prince Hall.
Dye molecular aggregation and other interactions on clay mineral surfaces cause phenomena such as methachromasy (change in color), fluorescence enhancement, or quenching, which represent significant changes in the spectral properties of the dye. These phenomena can be used to control the photophysical properties of hybrid systems based on cationic organic dyes. In the present study, the aggregation of two structurally similar cyanine dyes, 3,3’-diethyl-oxocyanine iodide (OxCy) and 3,3’-diethyl-2,2’-thiacyanine iodide (ThCy), in colloidal dispersions of three smectites (saponite, hectorite, and montmorillonite) was studied by absorption and fluorescence spectroscopy for a broad range of dye/smectite loadings. Spectral data were analysed by chemometric methods (principal component analysis, PCA, and multivariate curve resolution, MCR). Detailed analysis of the OxCy absorption spectra by the chemometric methods revealed the formation of two types of oblique aggregates exhibiting light absorption in both H- and J-bands. The existence of such similar aggregates, with similar splitting of excitation energies, appears to be related to the existence of two stable conformational isomers of this dye. On increasing the smectite CEC and dye/smectite loading, fluorescence quenching occurred. The ThCy dye exhibited a stronger tendency for molecular aggregation than OxCy. On increasing the smectite CEC, the formation of oblique aggregates with dominant H-bands also increased. On aging of the hybrid dispersions, equilibria of ThCy aggregates were shifted to the species with dominant J-bands. This behavior had a significant impact on the shape and intensity of the fluorescence emission of the hybrid dispersions. Using different smectites enables control of the dye aggregation and significant change to the photophysical properties of the hybrid systems. These systems can be used for the detailed study of the photophysical properties of cyanine dyes in various states. The colloidal systems with cyanine dyes can be used as precursors for the preparation of novel hybrid materials. In addition, the sensitive response of the photophysical properties of cyanine dyes to the clay mineral surface can be applied to the characterization of clay minerals.
The interaction of the water-soluble 5,10,15,20-tetrakis(l -methyl-4-pyridyl)-21H,23H-porphine (TMPyP) with different 2:1 phyllosilicates was examined by Raman and UV-visible spectroscopies. The clay samples were saturated with the tetracationic porphyrin and isolated from the aqueous suspension. A red shift of the Soret band was observed for all the clay-TMPyP systems in the order vermiculite < Laponite < mica-smectite (Syn-1) < montmorillonite (SWy-2). Furthermore, three components were observed for the Soret band (at ~425, 455 and 488 nm). Raman spectra of the isolated solids excited at 457.9 nm, 488.0 nm and 514.5 nm suggest the occurrence of porphyrin protonation, nonplanar distortion and rotation of the meso substituent. Based on the vibrational data, an acidity scale was proposed for the clays: vermiculite < Laponite < SWy-2 < Syn-1. The relative contribution of the protonated spectra is larger at 457.9 nm than at 488.0 nm, suggesting that the peak at 455 nm corresponds to the protonated species. In Laponite, the relative intensity of the meso substituent band at ~1635 cm-1 indicates that the dihedral angle formed between the porphyrin and the methyl-pyridyl rings decreased in the non-protonated porphyrin as a consequence of intercalation. Raman data are thus consistent with the presence of at least two porphyrin species in resonance at 457.9 nm: the protonated and a more planar non-protonated porphyrin. At 488.0 nm the number of enhanced modes increases suggesting a decrease in the porphyrin symmetry. This allows assignment of the absorption band centered at 488 nm to a non-planar porphyrin conformation.
The objective of the study was to contribute to the understanding of the influence of the structure and the 2:1 layer dimension of smectites on cation exchange capacity (CEC) reduction and the hydration behavior of Li-saturated smectites after heating. Five montmorillonites extracted from bentonites of different provenance were saturated with Li+ and heated to 300°C. Initial montmorillonites and montmorillonites with reduced layer charge (RCM) were characterized by comprehensive mineralogical analysis supplemented by CEC measurements, surface-area measurements by Ar adsorption, and 7Li, 27Al, and 29Si magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). The CEC of the initial montmorillonites varied between 89 and 130 cmol(+)/kg while the CEC of the RCM prepared at 300°C varied between 8 and 25 cmol(+)/kg. The lateral dimension of the 2:1 layers varied between 70 and 200 nm. The greatest decrease in CEC was observed for the montmorillonite with the largest diameter of the 2:1 layers and the smallest decrease was observed for the montmorillonite with the smallest diameter of the 2:1 layers. 7Li MAS NMR revealed an axially symmetric chemical environment of the hydrated interlayer Li+ with ηΔ = 0 for the chemical shift anisotropy tensor for unheated montmorillonites with >33% tetrahedral layer charge (ξ). The chemical environment is typical of innersphere hydration complexes of interlayer Li+. An axially non-symmetric chemical environment of the interlayer Li+ with ηCS of close to one was observed for all RCM. While the remaining CEC of RCM prepared at 300°C reflected the variable CEC at the edges, and thus the lateral size or aspect ratio of the 2:1 layers, the hydration complex of interlayer Li+ was strongly determined by the isomorphic substitutions in the dioctahedral 2:1 layers.
Widespread alteration in the Upper Cretaceous pyroclastic units of the Tirebolu (Giresun) area, NE Turkey, has resulted in significant occurrences of bentonite with economic potential. No detailed geological, mineralogical, or geochemical characterization of these occurrences has been carried out to date. The aim of this study was to describe the geological background, the mineralogical, chemical, and stable-isotope characteristics of the bentonite, and major aspects of their formation, e.g. type and source of low-temperature alteration, mass balance, chemical evolution of the smectites, and geochemistry of major and trace elements. The bentonite contains abundant smectite with occasional kaolinite and mordenite, volcanogenic feldspar, quartz, biotite, hornblende, glass shards, and pumice fragments, along with the diagenetic minerals, opal-CT, and, in some locations, calcite. X-ray diffraction patterns of the clay fractions exhibit characteristics of pure montmorillonite and beidellite-type smectite. Micromorphologically, the smectite exhibits a honeycomb texture, the kaolinite occurs in both vermiform and irregular platy forms, and the mordenite occurs in fibrous form. All of these minerals are edged with devitrified volcanic glass and resorbed feldspar. Chemically, the smectites are Ca-smectite. Geochemical data indicate that alteration of the pyroclastic units took place under suboxic and anoxic environmental conditions during bentonite formation. Field observations and mineralogical, geochemical, oxygen, and hydrogen isotopic data indicate that the alteration of feldspar and volcanic glass in the pyroclastics by mixed meteoric and sea water in a shallow marine environment under alkaline and acidic conditions, respectively, controlled by environmental Al, Ca, and Na concentrations, resulted in the formation of authigenic smectite, mordenite, and kaolinite. A large Ca content in the smectite originated from surrounding units, which resulted in high alkalinity; Mg originated from seawater.
The effect of humic acid (HA) adsorption on the hydrophilicity of two different montmorillonite samples (Na-montmorillonite, NaMt, and a Na-fluorinated Na-montmorillonite, FNaMt, or ‘Rassoul’) was investigated. The changes in the wettability of clays were discussed in terms of the non-electrostatic free energy of interaction between the clay particles immersed in aqueous humic acid solutions (ΔG121), using the van Oss-Chaudhury-Good (vOCG) model. The surface free energy components (both non-polar or Lifshitz-van der Waals, and polar or acid-base) of clays were obtained from contact angle measurements, after adsorption of humic acid, at acid or basic pH, in 10−2 M NaCl solutions. It was found that: (1) at acid pH, a progressive decrease in the hydrophilic character of both clays was observed when the humic acid concentration was increased; (2) at basic pH, the hydrophilic character of both samples studied increased with HA concentration; (3) the effect of humic acid adsorption on the wettability of model edge surfaces of the laminar montmorillonite particles was estimated from a parallel study on silica and alumina surfaces, and only a slight decrease in the hydrophilicity was observed, whatever the pH of the liquid media. The ζ potentials of both clays in the absence and presence of humic acid were determined and the linkage between ζ potential and the electron-donor character of the materials is discussed.
Organo-clays represent a special challenge for molecular simulations because they require accurate representation of the clay and the organic/aqueous sections of the model system and accurate representation of the interactions between them. Due to the broad range of force-field models available, an important question to ask is which sets of parameters will best suit the molecular modeling of the organo-intercalated smectites? To answer this question, the structure of the ethylene glycol (EG)-smectite complex is used here as a testing model because the intercalation of EG in smectites provides a stable interlayer complex with relatively constant basal spacing.
Three smectite samples with substantially different layer charge and charge localization were selected for X-ray diffraction (XRD) measurements. Their molecular models were built and molecular-dynamics simulations performed using various combinations of the organic force fields (CGenFF, GAFF, CVFF, and OPLS-aa) with ClayFF and INTERFACE force fields used to describe smectites. The simulations covered a range of different EG and water contents. For every structure, the density distribution of interlayer species along the direction perpendicular to the layer plane was calculated and then used to optimize the XRD patterns for these simulated models.
A comparison of these results with experimental XRD patterns shows very large discrepancies in the structures and basal spacings obtained for different layer charges as well as for different force fields and their combinations. The most significant factor affecting the accuracy of the calculated XRD patterns was the selection of the clay-mineral force-field parameters. The second important conclusion is that a slight modification of the basal oxygen parameters for non-electrostatic interactions (increase of their effective atomic diameters) may be a simple and straightforward way to improve significantly the agreement between the modeled XRD patterns with experiments, especially for high-charge smectites. Generally, among organic force fields, the least accurate results were obtained with CGenFF. For unmodified ClayFF, its combination with GAFF gave the best results, while the two other sets (OPLS-aa and CVFF) gave the best results in combination with ClayFFmod. The INTERFACE and INTERFACEmod produced much better results for low-charge montmorillonite than for high-charge smectites.
Due to the importance of clay minerals in metal sorption, many studies have attempted to derive mechanistic models that describe adsorption processes. These models often include several different types of adsorption sites, including permanent charge sites and silanol and aluminol functional groups on the edges of clay minerals. To provide a basis for development of adsorption models it is critical that molecular-level studies be done to characterize sorption processes. In this study we conducted X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) spectroscopic experiments on copper (II) sorbed on smectite clays using suspension pH and ionic strength as variables. At low ionic strength, results suggest that Cu is sorbing in the interlayers and maintains its hydration sphere. At high ionic strength, Cu atoms are excluded from the interlayer and sorb primarily on the silanol and aluminol functional groups of the montmorillonite or beidellite structures. Interpretation of the XAFS and EPR spectroscopy results provides evidence that multinuclear complexes are forming. Fitting of extended X-ray absorption fine structure spectra revealed that the Cu-Cu atoms in the multinuclear complexes are 2.65 Å apart, and have coordination numbers near one. This structural information suggests that small Cu dimers are sorbing on the surface. These complexes are consistent with observed sorption on mica and amorphous silicon dioxide, yet are inconsistent with previous spectroscopic results for Cu sorption on montmorillonite. The results reported in this paper provide mechanistic data that will be valuable for modeling surface interactions of Cu with clay minerals, and predicting the geochemical cycling of Cu in the environment.
Aflatoxins cause liver damage and suppress immunity. Through adsorption, smectites can be used to reduce the bioavailability of aflatoxins. To further reduce the toxicity of aflatoxins and to eliminate the treatments of aflatoxin-loaded smectites, the ability to degrade the aflatoxin adsorbed to non-toxic or less toxic compounds is desirable. The objective of the present study was to investigate the effects of temperature and the exchange cation on the transformation of adsorbed aflatoxin B1 on smectite. An AfB1-Ca-smectite (sm) complex was synthesized. To enhance the Lewis acidity of the complexes, the exchanged calcium in the complex was replaced with Mn and Cu to obtain AfB1-Mn-sm and AfB1-Cu-sm complexes, respectively. The aflatoxin-sm complexes and pure aflatoxin B1 were dried at 60°C in aluminum cups, and heated from 100 to 200°C in 25°C steps. Aflatoxin B1 and its transformation products were extracted with methanol after the heat treatment. The extracts were analyzed using UV spectroscopy, high performance liquid chromatography (HPLC)-fluorescence/UV, ultra-performance liquid chromatography (UPLC)-photodiode array (PDA), and electrospray ionization-tandem quadrupole-mass spectrometry (ESI-TQDMS). The solid residues were analyzed using Fourier-transform infrared spectroscopy (FTIR). The UV and FTIR spectra of the AfB1-sm clay residue extracts obtained after heating had decreased AfB1 peak intensities and shifted peak positions with increased heating temperature. Significant shifts in band positions and changes in the shape of the UV spectra were observed in the extracts from the AfB1-Ca-sm complex heated at 175°C, the AfB1-Cu-sm complex heated at 150°C, and the AfB1-Mn-sm complex heated at 125°C. The HPLC and UPLCMS analyses of AfB1-sm complex extracts indicated a gradual decrease in AfB1 concentration with increased heating temperature and the formation of aflatoxins B2, B2a, M1, M2, and other unidentified compounds. No new compound was observed in the extracts of pure aflatoxin B1 after a comparable heating experiment. These results suggest that smectite can effectively convert aflatoxin to other less toxic forms at elevated temperatures. Smectite ion exchange with Cu or Mn transition-metal cations and heat treatment induced more efficient conversion of the adsorbed aflatoxin B1 molecules to other compounds.
Bentonites are readily available clays used in the livestock industry as feed additives to reduce aflatoxin (AF) exposure; their potential interaction with nutrients is the main concern limiting their use, however. The objective of the present study was to determine the safety of a dietary sodium-bentonite (Na-bentonite) supplement as a potential AF adsorbent, using juvenile Sprague Dawley (SD) rats as a research model. Animals were fed either a control diet or a diet containing Na-bentonite at 0.25% and 2% (w/w) inclusion rate. Growth, serum, and blood biochemical parameters, including selected serum vitamins (A and E) and elements such as calcium (Ca), potassium (K), iron (Fe), and zinc (Zn) were measured. The mineral characteristics and the aflatoxin B1 sorption capacity of Na-bentonite were also determined. By the end of the study, males gained more weight than females in control and Na-bentonite groups (p ≤ 0.0001); the interaction between treatment and sex was not significant (p = 0.6780), however. Some significant differences between the control group and bentonite treatments were observed in serum biochemistry and vitamin and minerals measurements; however, parameters fell within reference clinical values reported for SD rats and no evidence of dose-dependency was found. Serum Na and Na/K ratios were increased, while K levels were decreased in males and females from Na-bentonite groups. Serum Zn levels were decreased only in males from Na-bentonite treatments. Overall, results showed that inclusion of Na-bentonite at 0.25% and 2% did not cause any observable toxicity in a 3-month rodent study.
The hydrothermal stabilities of a low-Fe clinochlore and a high-Mg chamosite, in the presence of kaolinite, were investigated recently at T ⩽ 200°C and (Aja and Small, 1999; Aja and Dyar, 2002). Standard state thermodynamic properties (, and ) have been obtained for the two chlorites whose structural formulae are () (Si5.66Al2.34)O20(OH)16 and ()(Si5.63Al2.37)O20(OH)16. For the low-Fe clinochlore, the respective thermochemical properties are 430 J mol−1 K−1, −8770.64±35.24 kJ mol−1, and −8120.54±32.63 kJ mol−1. , and , similarly obtained for the Windsor chamosite are −7851.29±23.14 kJ mol−1, −7271.01±21.43 kJ mol−1 and 668±5 J mol−1K−1, respectively. Ideal site-mixing models of chlorite composition, along the chamosite-clinochlore binary, fail to model satisfactorily these chlorite-fluid equilibria only at lower temperatures (T <175°C). The magnitudes of the excess thermodynamic properties calculated for these chlorites, within the ternary clinochlore-daphnite-sudoite system, suggest significant deviations from ideality.
A field-mapping and crystal-chemical study of two alunite- and halloysite-rich deposits in the Turplu area, situated northwest of Balıkesir on the Biga Peninsula of northwest Turkey reveals a mineralogically diverse and a potentially economic clay deposit. The mineral assemblage along fault zones is dominated by halloysite and sometimes alunite. The alunite is nearly end-member in composition (a = 6.995 Å, c = 17.195 Å) often occurring with a minor Ca phosphate phase. Of the two deposits studied, the more northerly mine contains more alunite relative to halloysite. Geochemical alteration indices suggest that the northern mine has experienced a slightly greater degree of hydrothermal modification. Halloysite is found in both hydrated and dehydrated states and assumes a tubular morphology. Observations by transmission and scanning electron microscopy are consistent with a model of halloysite dehydration, where the shapes transform from an open-hole tubular morphology to a closed-hole unfurled morphology.
Mineral paragenesis includes the effects of initial deposition of volcanic tuffs and andesite on top of karstic terrain. The contact between altered volcanics and underlying limestones is irregular and appears to have provided a mechanism to flush both hydrothermal and meteoric waters through the volcanics. Periods of hydrothermal alteration (hypogene) contemporaneous with extensional and strike-slip faulting have resulted in alunite and halloysite deposits. Hydrothermal alteration is concentrated near the fault zones. Because of subsequent weathering (supergene) away from the fault zones, much of the andesitic volcanic rocks have been altered to a more smectite-rich and kaolinite-bearing assemblage. The deposits continue to be both plastically deformed in the alunite/halloysite regions and to undergo brittle deformation in the saprolitized volcanics. Tectonic deformation has mixed the contacts, such that limestone blocks are entrained into parts of the alteration zones. Gibbsite and gypsum are common weathering products associated with limestone block inclusions. Genetic models for the origins of alunite-halloysite deposits in NW Turkey should consider as possible influencing factors the underlying lithologies, the extent of hydrothermal alteration, and recent weathering by meteoric fluids. In the case of the Turplu deposits, karstic limestones, hydrothermal circulation of sulfate-rich waters, and a post-alteration history of meteoric weathering were all important factors in their formation.
A method for the determination of the water-uptake capacity of powders which is said to be applicable to viscose silk, specific celluloses, soap, paint, glue, gelatine, adhesives based on starch, biological samples, and soils, was proposed by Enslin in 1933 and has been improved several times since then. Today in Germany, the so-called Enslin-Neff method is used by the clay industry, in civil engineering, and in soil science. Many authors have identified the influence of evaporation on the results obtained using this method and the latest modification of the Enslin-Neff method was introduced by Dieng in 2005 where a balance was used instead of a burette to record the water-uptake capacity. It is proved here that the Dieng method actually operates correctly, independent of relative humidity. Therefore, a significantly improved reproducibility of the Dieng method compared to the traditional method was expected. However, it was found that the Dieng apparatus has specific sources of error (e.g. constance of the balance over 24 h) and varying the relative humidity no longer has a systematic affect on the results.
The reproducibility of the traditional Enslin-Neff method is strongly influenced by variations in ambient conditions in the laboratory (particularly temperature and relative humidity). Application of the Dieng method in different laboratories with varying ambient conditions will lead to improved reproducibility and comparability of results. In addition, results from the Dieng apparatus can be collected using a connected computer and this represents an important advance also.
The Ypresian phosphatic series of the Gafsa-Metlaoui basin, southwestern Tunisia, is represented by an alternation of phosphatic levels and interbedded facies, which are composed of marly clay and silica-rich rocks. The present work aimed to clarify the genesis of palygorskite and sepiolite of the interbedded facies and to understand the depositional environment of the phosphatic series. The interbedded facies of the Stah and Jellabia mines were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Energy Dispersive X-ray microanalysis (EDX) of individual constituents and their aggregates. The data obtained indicate that samples are made up of francolite, calcite, dolomite, quartz, feldspars, and clay minerals; the latter consist of palygorskite-sepiolite minerals associated with smectite. Observations by SEM revealed the occurrence of palygorskite and sepiolite as fine and filamentous fibers with thread-like facies and coating dolomite, calcite, and a marly matrix. Such features can be considered as textural evidence of authigenic palygorskite-sepiolite. At the bottom of the Stah section, SEM observations revealed that the fine fibers are more abundant within silica-rich rocks. Silica is commonly available due to bacterial activity saturating its environment with the silicic acid required for the formation of palygorskite-sepiolite. In the interbedded facies of the Jellabia section, the moderate fibrous clay content and the presence of well crystallized dolomite revealed that the shallow-marine water was characterized by high-Mg and low-Si activities.