To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Correct prediction of particle transport by surface waves is crucial in many practical applications such as search and rescue or salvage operations and pollution tracking and clean-up efforts. Recent results by Deike et al. (J. Fluid Mech., vol. 829, 2017, pp. 364–391) and Pizzo et al. (J. Phys. Oceanogr., vol. 49, no. 4, 2019, pp. 983–992) have indicated transport by deep-water breaking waves is enhanced compared with non-breaking waves. To model particle transport in irregular waves, some of which break, we develop a stochastic differential equation describing both mean particle transport and its uncertainty. The equation combines a Brownian motion, which captures non-breaking drift-diffusion effects, and a compound Poisson process, which captures jumps in particle positions due to breaking. From the corresponding Fokker–Planck equation for the evolution of the probability density function for particle position, we obtain closed-form expressions for its first three moments. We corroborate these predictions with new experiments, in which we track large numbers of particles in irregular breaking waves. For breaking and non-breaking wave fields, our experiments confirm that the variance of the particle position grows linearly with time, in accordance with Taylor's single-particle dispersion theory. For wave fields that include breaking, the compound Poisson process increases the linear growth rate of the mean and variance and introduces a finite skewness of the particle position distribution.
Invasive alien species represent a multifaceted management problem in terms of threats to biodiversity and ecosystems and their impacts on agriculture and human well-being. Ambrosia artemisiifolia is an invasive alien plant in Europe that affects the human population as its already highly allergenic pollen can interact with air pollutants, resulting in detrimental effects on health. In this context, the invasive beetle Ophraella communa was proposed as a biocontrol agent of A. artemisiifolia, as it feeds on its leaves, leading to a decrease in pollen production. This paper takes advantage of the different co-occurrence classes obtained by the ecological niche models inferred for both of these species based on current and future climatic conditions. We integrate them with spatial data regarding major air pollutants (nitrogen dioxide and fine particulate matter). We couple this information with European human population density data at a narrow territorial scale to infer current and future statistically significant hotspots of health risk. The Netherlands and the UK host the widest hotspots within their national territory for both current (7.09% and 3.54%, respectively) and future (15.04% and 6.70%, respectively) scenarios. Considering the alarming results obtained for some areas, the monitoring and biocontrol of A. artemisiifolia should be applied as a European strategy.
Three-dimensional turbulent flows enhance velocity gradients via strong nonlinear interactions of the rate-of-strain tensor with the vorticity vector, and with itself. For statistically homogeneous flows, their total contributions to gradient production are related to each other by conservation of mass, and so are the total enstrophy and total dissipation. However, locally, they do not obey this relation and have different (often extreme) values, and for this reason both production mechanisms have been subject to numerous studies, often decomposed into multi-scale interactions. In general lines, their dynamics and contributions to the cascade processes and turbulent kinetic dissipation are different, which poses a difficulty for turbulence modelling. In this paper, we explore the consequence of the ‘Betchov’ relations locally, and show that they implicitly define a length scale. This length scale is found to be approximately three times the size of the turbulent structures and their interactions. It is also found that, while the non-locality of the dissipation and enstrophy at a given scale comes mostly from larger scales that do not cancel, the non-local production of strain and vorticity comes from multi-scale interactions. An important consequence of this work is that isotropic cascade models need not distinguish between vortex stretching and strain self-amplification, but can instead consider both entities as part of a more complex transfer mechanism, provided that their detailed point value is not required and a local average of reasonable size is sufficient.
Mental imagery, or ‘seeing with the mind’s eye’ (Kosslyn et al. 2001), provokes strong emotional responses (Ji et al., 2016). To date, there is a lack of data on the content and clinical characteristics (e.g. vividness, likelihood, emotional effects) of spontaneous mental images (MI) in people with bipolar disorder (BD) according to their thymic states.
Aim:
The current study sought to assess the characteristics associated with the contents of MI in people with BD.
Method:
Forty-two euthymic individuals diagnosed with BD (American Psychiatric Association, 2013) were asked to self-report their MI during depression, (hypo)mania and euthymia. Participants also rated levels of vividness, likelihood and emotional activation related to MI (i.e. valence, arousal, type of emotion).
Results:
The contents of the MI revealed phenomenological aspects of BD. Different themes were associated with each thymic phase. In (hypo)mania and in euthymia, the mental images were assessed as being as vivid as probable (p>.05). (Hypo)manic and euthymic-related MI activated more pleasure than displeasure (p<.001) and were mainly associated with joy. In depression, MI were assessed as more vivid than likely (p<.05). In depression, MI activated more displeasure than pleasure (p<.0001) and induced mainly sadness.
Discussion:
Overall, a congruence between the contents of images and the three thymic phases was found. The content of the MI was related to self-reported emotional effects that were congruent with the thymic phases concerned. The results add new clinical information for the use of imagery-based cognitive therapy in individuals with BD.
Revolutionary protest rarely begins as democratic or revolutionary. Instead, it grows in a process of positive feedback, incorporating new constituencies and generating new demands. If protest is not revolutionary at its onset, theory should reflect this and be able to explain the endogenous emergence of democratic demands. In this article, I combine multiple data sources on the 2010–2011 Tunisian Revolution, including survey data, an original event catalogue, and field interviews. I show that the correlates of protest occurrence and participation change significantly during the uprising. Using the Tunisian case as a theory-building exercise, I argue that the formation of protest coalitions is essential, rather than incidental, to democratic revolution.
Hypercholesterolaemia is a major risk factor for CVD. Fish intake is associated with lower risk of CVD, whereas supplementation with n-3 long-chain PUFA (LC-PUFA) has little effect on the cholesterol concentration. We therefore investigated if cetoleic acid (CA), a long-chain MUFA (LC-MUFA) found especially in pelagic fish species, could lower the circulating total cholesterol (TC) concentration in rodents. A systematic literature search was performed using the databases PubMed, Web of Science and Embase, structured around the population (rodents), intervention (CA-rich fish oils or concentrates), comparator (diets not containing CA) and the primary outcome (circulating TC). Articles were assessed for risk of bias using the SYRCLE’s tool. A meta-analysis was conducted in Review Manager v. 5.4.1 (the Cochrane Collaboration) to determine the effectiveness of consuming diets containing CA-rich fish oils or concentrates on the circulating TC concentration. Twelve articles were included in the systematic review and meta-analysis, with data from 288 rodents. Consumption of CA-rich fish oils and concentrates resulted in a significantly lower circulating TC concentration relative to comparator groups (mean difference −0·65 mmol/l, 95 % CI (−0·93, −0·37), P < 0·00001), with high statistical heterogeneity (I2 = 87 %). The risk of bias is unclear since few of the entries in the SYRCLE’s tool were addressed. To conclude, intake of CA-rich fish oils and concentrates prevents high cholesterol concentration in rodents and should be further investigated as functional dietary ingredients or supplements to reduce the risk for developing CVD in humans.
This study examines the effects of surface topography on the flow and performance of a self-propelled swimming (SPS) body. We consider a thin flat plate with an egg-carton roughness texture undergoing prescribed undulatory swimming kinematics at Strouhal number $0.3$ and tail amplitude to length ratio $0.1$; we use plate Reynolds numbers $Re=6$, 12 and $24\times 10^3$, and focus on $12\,000$. As the roughness wavelength is decreased, we find that the undulation wave speed must be increased to overcome the additional drag from the roughness and maintain SPS. Correspondingly, the extra wave speed raises the power required to maintain SPS, making the swimmer less efficient. To decouple the roughness and the kinematics, we compare the rough plates to equivalent smooth cases by matching the kinematic conditions. We find that all but the longest roughness wavelengths reduce the required swimming power and the unsteady amplitude of the forces when compared to a smooth plate undergoing identical kinematics. Additionally, roughness can enhance flow enstrophy by up to 116 % compared to the smooth cases without a corresponding spike in forces; this suggests that the increased mixing is not due to increased vorticity production at the wall. Instead, the enstrophy is found to peak strongly when the roughness wavelength is approximately twice the boundary layer thickness over the $Re$ range, indicating the roughness induces large-scale secondary flow structures that extend to the edge of the boundary layer. This study reveals the nonlinear interaction between roughness and kinematics beyond a simple increase or decrease in drag, illustrating that roughness studies on static shapes do not transfer directly to unsteady swimmers.
In the wake of the Dobbs decision withdrawing federal constitutional protection for reproductive rights, the United States is in the throes of federalist conflicts. Some states are enacting draconian prohibitions of abortion or gender-affirming care, whereas other states are attempting to shield providers and their patients seeking care. This article explores standard arguments supporting federalism, including that it allows for cultural differences to remain along with a structure that provides for the advantages of common security and commerce, that it provides a laboratory for confined experiments, that it is government closer to the people and thus more informed about local needs and preferences, and that it creates layers of government that can constrain one another and thus doubly protect rights. We contend that these arguments do not justify significant differences among states with respect to the recognition of important aspects of well-being; significant injustices among subnational units cannot be justified by federalism. However, as nonideal theorists, we also observe that federalism presents the possibility of some states protecting rights that others do not. Assuming that movement among subnational units is protected, those who are fortunate enough to be able to travel will be able to access rights they cannot access at home. Nonetheless, movement may not be readily available to minors, people without documentation, people with disabilities, people who lack economic resources, or people who have responsibilities that preclude travel. Only rights protection at the federal level will suffice in such cases.
As biological organisms, we age and, eventually, die. However, age’s deteriorating effects may not be universal. Some theoretical entities, due to their synthetic composition, could exist independently from aging—artificial general intelligence (AGI). With adequate resource access, an AGI could theoretically be ageless and would be, in some sense, immortal. Yet, this need not be inevitable. Designers could imbue AGIs with artificial mortality via an internal shut-off point. The question, though, is, should they? Should researchers curtail an AGI’s potentially endless lifespan by deliberately making it mortal? It is this question that this article explores. First, it considers what type of AGI is under discussion before outlining how such beings could be ageless. Then, after clarifying the type of immortality under discussion and arguing that imbuing an AGI with synthetic aging would be person-affecting, the article explores four core conundrums: (i) deliberately causing a morally significant being’s death; (ii) immortality’s associated harms; (iii) concerns about immortality’s unequal assignment; and (iv) the danger of immortal AGI overlords. The article concludes that while prudence requires we create an aging AGI, in the face of the material harm such an action would constitute, this is an insufficient reason to justify doing so.
Despite the fact that older adults interact frequently with physicians, there is little research examining their preferences, and perceptions of the patient–physician relationship. Research on this topic is particularly sparse when it comes to older men. This study investigates older men’s experiences with physicians, their perceptions of the patient–physician relationship, and the extent to which they wished to be involved in their health care. In-depth, face-to-face interviews were conducted with 23 men 55–96 years of age. Findings reveal that older men want to participate in the medical encounter and be involved in their care, contradicting earlier work suggesting that older adults prefer to be passive patients. Preferred involvement, however, varied along a continuum ranging from “quasi-involvement” to “taking charge”, with most participants being in the middle, preferring a “partnership” patient–physician relationship. Factors influencing patient involvement and potential to negotiate the patient–physician relationship are discussed.
Diets deficient in fibre are reported globally. The associated health risks of insufficient dietary fibre are sufficiently grave to necessitate large-scale interventions to increase population intake levels. The Danish Whole Grain Partnership (DWP) is a public–private enterprise model that successfully augmented whole-grain intake in the Danish population. The potential transferability of the DWP model to Slovenia, Romania and Bosnia-Herzegovina has recently been explored. Here, we outline the feasibility of adopting the approach in the UK. Drawing on the collaborative experience of DWP partners, academics from the Healthy Soil, Healthy Food, Healthy People (H3) project and food industry representatives (Food and Drink Federation), this article examines the transferability of the DWP approach to increase whole grain and/or fibre intake in the UK. Specific consideration is given to the UK’s political, regulatory and socio-economic context. We note key political, regulatory, social and cultural challenges to transferring the success of DWP to the UK, highlighting the particular challenge of increasing fibre consumption among low socio-economic status groups – which were also most resistant to interventions in Denmark. Wholesale transfer of the DWP model to the UK is considered unlikely given the absence of the key ‘success factors’ present in Denmark. However, the DWP provides a template against which a UK-centric approach can be developed. In the absence of a clear regulatory context for whole grain in the UK, fibre should be prioritised and public–private partnerships supported to increase the availability and acceptability of fibre-rich foods.
The aim was to explore the implications of follicular output rate (FORT), ovarian sensitivity index (OSI), ovarian response prediction index (ORPI), and follicle-to-oocyte index (FOI) in low-prognosis patients defined by POSEIDON criteria. In total, 4030 fresh in vitro fertilization (IVF) cycles from January 2013 to October 2021 were included in this retrospective cohort analysis and were categorized into four groups based on the POSEIDON criteria. The FORT between Groups 1 and 2 (0.61 ± 0.34 vs. 0.65 ± 0.35, P = 0.081) and Groups 3 and 4 (1.08 ± 0.82 vs. 1.09 ± 0.94, P = 0.899) were similar. The OSI in the order from the highest to the lowest were 3.01 ± 1.46 in Group 1, 2.28 ± 1.09 in Group 2, 1.54 ± 1.04 in Group 3, and 1.34 ± 0.96 in Group 4 (P < 0.001). The trend in the ORPI values was consistent with that in the OSI. FORT, OSI, ORPI, and FOI complemented each other and offered excellent effectiveness in reflecting ovarian reserve and response, but they were not good predictors of clinical pregnancy rate (CPR) from IVF.
Dietary intake of long-chain n-3 PUFA (n-3 PUFA), particularly EPA and DHA, has been associated with psychological well-being, but little is known about the n-3 PUFA intake of homeless youth. The current study determined the association between depression and anxiety symptoms and n-3 PUFA intake and erythrocytes status in homeless youth. Totally, 114 homeless youth aged 18–24 years were recruited from a drop-in centre. n-3 PUFA dietary intake was assessed using an FFQ, and erythrocytes status was determined by gas chromatography (GC). Linear regression models were used to determine the relationship between psychological well-being and n-3 PUFA intake and status. The mean intakes of EPA and DHA for all participants (0·06 ± 0·13 g/d and 0·11 ± 0·24 g/d) were well below recommended levels, and mean erythrocytes EPA + DHA (n-3 index) in the cohort (2·42 %) was lower than reported for healthy, housed adolescents and those with clinical depression. There was no association of n-3 PUFA intake and erythrocytes status with either depression or anxiety. However, the relationships of depression with dietary EPA (P = 0·017) and DHA (P = 0·008), as well as erythrocytes DHA (P = 0·007) and n 3-index (P = 0·009), were significantly moderated by sex even after adjusting for confounders. Specifically, among females, as the intake and status of these n-3 PUFA decreased, depression increased. Our findings show poor dietary intake and low erythrocytes status of n-3 PUFA among homeless youth, which is associated with depressive symptoms among females.
This paper investigates the effect of the optimised morphing leading edge (MLE) and the morphing trailing edge (MTE) on dynamic stall vortices (DSV) for a pitching aerofoil through numerical simulations. In the first stage of the methodology, the optimisation of the UAS-S45 aerofoil was performed using a morphing optimisation framework. The mathematical model used Bezier-Parsec parametrisation, and the particle swarm optimisation algorithm was coupled with a pattern search with the aim of designing an aerodynamically efficient UAS-45 aerofoil. The $\gamma - R{e_\theta }$ transition turbulence model was firstly applied to predict the laminar to turbulent flow transition. The morphing aerofoil increased the overall aerodynamic performances while delaying boundary layer separation. Secondly, the unsteady analysis of the UAS-S45 aerofoil and its morphing configurations was carried out and the unsteady flow field and aerodynamic forces were analysed at the Reynolds number of 2.4 × 106 and five different reduced frequencies of k = 0.05, 0.08, 1.2, 1.6 and 2.0. The lift (${C_L})$, drag (${C_D})$ and moment (${C_M})\;$coefficients variations with the angle-of-attack of the reference and morphing aerofoils were compared. It was found that a higher reduced frequencies of 1.2 to 2 stabilised the leading-edge vortex that provided its lift variation in the dynamic stall phase. The maximum lift $\left( {{C_{L,max}}} \right)$ and drag $\left( {{C_{D,max}}} \right)\;$coefficients and the stall angles of attack are evaluated for all studied reduced frequencies. The numerical results have shown that the new radius of curvature of the MLE aerofoil can minimise the streamwise adverse pressure gradient and prevent significant flow separation and suppress the formation of the DSV. Furthermore, it was shown that the morphing aerofoil delayed the stall angle-of-attack by 14.26% with respect to the reference aerofoil, and that the ${C_{L,max}}\;$of the aerofoil increased from 2.49 to 3.04. However, while the MTE aerofoil was found to increase the overall lift coefficient and the ${C_{L,max}}$, it did not control the dynamic stall. Vorticity behaviour during DSV generation and detachment has shown that the MTE can change the vortices’ evolution and increase vorticity flux from the leading-edge shear layer, thus increasing DSV circulation. The conclusion that can be drawn from this study is that the fixed drooped morphing leading edge aerofoils have the potential to control the dynamic stall. These findings contribute to a better understanding of the flow analysis of morphing aerofoils in an unsteady flow.
There has always been a debate about the location and role of women during the persecution of Christians under Mwanga II’s first reign as Kabaka of Buganda. Kabaka is the Luganda equivalent of the English word king. The debate is partly fueled by a total absence of women from the pictures of Ugandans historically referred to as the Uganda Martyrs. This paper uses archival research to tell the story of an African woman who, in her adult life, married two devout Anglicans, in whose lives she was actively involved, laying a foundation for Uganda’s Anglican tradition. Evidence shows the first Anglican baptism, teacher and burial in Uganda are traced to her first marriage, which ended in early 1884 with the death of her husband from smallpox. Nakimu Nalwanga Sarah would have been the first martyr if not for the timely discovery that she was Mwanga’s relative. Still, as a punishment, she was ordered to witness the cruel burning of the first martyrs on January 31, 1885. She married again in a marriage that produced Uganda’s first catechist, deacon and priest. Her second husband was part of a team that completed the translation of the first Luganda Bible in 1895.
We investigate the nonlinear evolution of pairs of three-dimensional, equal-sized and opposite-signed vortices at finite Froude and Rossby numbers. The two vortices may be offset in the vertical direction. The initial conditions stem from relative equilibria obtained numerically in the quasi-geostrophic regime, for vanishing Froude and Rossby numbers. We first address the linear stability of the quasi-geostrophic opposite-signed pairs of vortices, and show that for all vertical offsets, the vortices are sensitive to an instability when close enough together. In the nonlinear regime, the instability may lead to the partial destruction of the vortices. We then address the nonlinear interaction of the vortices for various values of the Rossby number. We show that as the Rossby number increases, destructive interactions, where the vortices break into pieces, may occur for a larger separation between the vortices, compared to the quasi-geostrophic case. We also show that for well-separated vortices, the interaction is non-destructive, and ageostrophic effects lead to the deviation of the trajectory of the pair of vortices, as the anticyclonic vortex dominates the interaction. Finally, we show that the flow remains remarkably close to a balanced state, emitting only waves containing negligible energy, even when the interaction leads to the destruction of the vortices.
In the context of linear stability analysis, considering unsteady base flows is notoriously difficult. A generalisation of modal linear stability analysis, allowing for arbitrarily unsteady base flows over a finite time, is therefore required. The recently developed optimally time-dependent (OTD) modes form a projection basis for the tangent space. They capture the leading amplification directions in state space under the constraint that they form an orthonormal basis at all times. The present numerical study illustrates the possibility to describe a complex flow case using the leading OTD modes. The flow under investigation is an unsteady case of the Blasius boundary layer, featuring streamwise streaks of finite length and relevant to bypass transition. It corresponds to the state space trajectory initiated by the minimal seed; such a trajectory is unsteady, free from any spatial symmetry and shadows the laminar–turbulent separatrix for a finite time only. The finite-time instability of this unsteady base flow is investigated using the 8 leading OTD modes. The analysis includes the computation of finite-time Lyapunov exponents as well as instantaneous eigenvalues, and of the associated flow structures. The reconstructed instantaneous eigenmodes are all of outer type. They map unambiguously the spatial regions of largest instantaneous growth. Other flow structures, previously reported as secondary, are identified with this method as relevant to streak switching and to streamwise vortical ejections. The dynamics inside the tangent space features both modal and non-modal amplification. Non-normality within the reduced tangent subspace, quantified by the instantaneous numerical abscissa, emerges only as the unsteadiness of the base flow is reduced.