We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter covers applications of quantum computing in the area of quantum chemistry, where the goal is to predict the physical properties and behaviors of atoms, molecules, and materials. We discuss algorithms for simulating electrons in molecules and materials, including both static properties such as ground state energies and dynamic properties. We also discuss algorithms for simulating static and dynamic aspects of vibrations in molecules and materials.
In 1976 Raymond Williams commented, ‘Culture is one of the two or three most complicated words in the English language.’ Such implied difficulty has not prevented Bloomsbury Academic, since the 2000s, from publishing around forty series of their well-produced and generously illustrated Cultural Histories, with, according to their website, a further fifty in progress. Each series contains six volumes, each book covering, in theory, the same chronological period (antiquity, the Middle Ages, the Renaissance, the Enlightenment, the age of empire and the modern age), though there is some variation depending on precise topic. The idea is that one can use these books not only to read ‘horizontally’ about a subject across time, but also ‘vertically’ through different subjects in the same period – a idea made easier by the e-texts of the series on Bloomsbury's website.
After a brief introduction to the basic concepts including some questions of language, the first part of this paper provides a brief survey of the historical development of laws and models in Chemistry, in particular atomic and molecular models. In the second part this paper deals with the fundamental role of the observation of symmetry violations in physics and chemistry in understanding the most ‘fundamental laws’ and current efforts towards such studies by means of high resolution spectroscopy of molecules. We conclude with a brief discussion of the implications for current unsolved problems in astrophysics and biology.
In climate modeling, the stratospheric ozone layer is typically only considered in a highly simplified form due to computational constraints. For climate projections, it would be of advantage to include the mutual interactions between stratospheric ozone, temperature, and atmospheric dynamics to accurately represent radiative forcing. The overarching goal of our research is to replace the ozone layer in climate models with a machine-learned neural representation of the stratospheric ozone chemistry that allows for a particularly fast, but accurate and stable simulation. We created a benchmark data set from pairs of input and output variables that we stored from simulations of the ATLAS Chemistry and Transport Model. We analyzed several variants of multilayer perceptrons suitable for physical problems to learn a neural representation of a function that predicts 24-h ozone tendencies based on input variables. We performed a comprehensive hyperparameter optimization of the multilayer perceptron using Bayesian search and Hyperband early stopping. We validated our model by replacing the full chemistry module of ATLAS and comparing computation time, accuracy, and stability. We found that our model had a computation time that was a factor of 700 faster than the full chemistry module. The accuracy of our model compares favorably to the full chemistry module within a 2-year simulation run, also outperforms a previous polynomial approach for fast ozone chemistry, and reproduces seasonality well in both hemispheres. In conclusion, the neural representation of stratospheric ozone chemistry in simulation resulted in an ozone layer that showed a high accuracy, significant speed-up, and stability in a long-term simulation.
Although the notion of God as the legislator of nature was already known in the Jewish-Christian tradition, the modern concept of laws of nature was established only in the seventeenth-century mechanical philosophy of nature, particularly by Descartes and Newton, and remained largely confined to that tradition before it became seriously questioned in quantum mechanics. After a brief historical survey, I first discuss various examples of so-called laws of nature in chemistry and physical chemistry proposed in the nineteenth century to conclude that none of them really correspond to the original concept, but that they rather comprise a variety of epistemologically different statements. More recent philosophical approaches to extend the concept of laws, so as to cover chemical cases, all result in inacceptable consequences. The deeper reason of the comparatively little importance of natural laws, I finally argue, is that chemistry as the original epitome of the experimental or Baconian science has largely followed methodological pluralism in which a variety of models to be chosen from for pragmatic reasons are preferred over universal laws of nature as in mathematical physics.
This study focused on a detailed mineralogical and crystal-chemical analysis of Mg-smectites from four bentonite samples from Turkey. Mg-rich smectites, mainly associated with alkaline and evaporitic depositional conditions, are formed in environments such as salt lakes, brine springs, and sabkhas, as well as in hydrothermal systems, in some cases by transformation from other phyllosilicates. Saponite has also been documented on the surface of Mars. The systems that produce Mg-smectites are less common than those that produce dioctahedral Al-smectites and consequently Mg-rich smectites are less abundant than dioctahedral smectites. For this reason, information on nanoscale mineralogy and crystal chemistry of Mg-smectites is relatively lacking. In this study, X-ray diffraction, thermal analysis and electron microscopy were used to study Mg-smectites. The crystal chemistry of single crystals determined with analytical electron microscopy in transmission electron microscopy (AEM-TEM) revealed that all samples had notable variability in the composition of individual crystals, such that no point analysis resulted in ideal structural formulae for saponite, stevensite, sepiolite, or palygorskite. They contain SiO2 content greater than that corresponding to a Mg-smectite, even stevensite, and often are intermediate to Mg-smectites and the sepiolite-palygorskite series. Meanwhile, the number of octahedral cations is small for fibrous clay minerals. Neither the point analysis of smectitic particles nor the mean structural formula fit properly for Mg-smectites showing crystallochemistry complexity. The results of these point analyses, in which no contamination has been observed, suggest that these smectites have intermediate compositions between trioctahedral smectites and sepiolite-palygorskite, indicating nanometer-scale intergrowths of these minerals in Mg-rich clay deposits.
The human gut microbiome represents an extended “second genome” harbouring about 1015 microbes containing >100 times the number of genes as the host. States of health and disease are largely mediated by host–microbial metabolic interplay, and the microbiome composition also underlies the differential responses to chemotherapeutic agents between people. Chemical information will be the key to tackle this complexity and discover specific gut microbiome metabolism for creating more personalised interventions. Additionally, rising antibiotic resistance and growing awareness of gut microbiome effects are creating a need for non-microbicidal therapeutic interventions. We classify chemical interventions for the gut microbiome into categories like molecular decoys, bacterial conjugation inhibitors, colonisation resistance-stimulating molecules, “prebiotics” to promote the growth of beneficial microbes, and inhibitors of specific gut microbial enzymes. Moreover, small molecule probes, including click chemistry probes, artificial substrates for assaying gut bacterial enzymes and receptor agonists/antagonists, which engage host receptors interacting with the microbiome, are some other promising developments in the expanding chemical toolkit for probing and modulating the gut microbiome. This review explicitly excludes “biologics” such as probiotics, bacteriophages, and CRISPR to concentrate on chemistry and chemical tools like chemoproteomics in the gut-microbiome context.
In the UK, disposal of packaged intermediate-level radioactive waste may involve waste packages being placed in a geological disposal facility (GDF) and surrounded by a cementitious backfill. Cracking of the backfill could occur due to a number of mechanisms, and this could affect the post-closure performance of the GDF.
This work has assessed potential cracking in the backfill during the backfilling and early post-closure period of GDF vaults with an open crown space in a higher strength rock. From the comprehensive range of processes considered, three were identified as potentially causing cracking: (1) during backfilling, plastic settlement under solid horizontal surfaces could result in horizontal gaps beneath waste packages; (2) within days of backfilling, early-age thermal contraction of the backfill could result in primarily vertical cracks; (3) over a number of years, expansion of waste packages could result in large horizontal cracks.
A groundwater flow model incorporating a representation of the cracks was used to calculate flows through a backfilled GDF vault, and through the cracks themselves. Including cracks increased the flow rate significantly. A reactive transport model was used to estimate the evolution of the pore water chemistry as groundwater flows through the cracked backfill. Calcite and brucite were predicted to precipitate, with brucite subsequently dissolving. Calcite build-up could seal some cracks.
The starting point for the development of any astrochemical model is the knowledge of whether a molecule is present in the astrophysical environment considered, with the astronomical observations of spectroscopic signatures providing the unequivocal proof of its presence. Among the goals of astrochemistry, the detection of potential prebiotic molecules in the interstellar medium and planetary atmospheres is fundamental in view of possibly understanding the origin of life. The detection of new molecules in space requires the spectroscopic signatures (mostly, rotational transition frequencies) to be accurately determined over a large frequency range. This task is more and more often the result of a synergic interplay of experiment and theory.
Crystal structures along the join beryl–pezzottaite have been refined and their compositions determined by electron-microprobe analysis. All crystals show sharp uniform diffraction spots but are microscale mixtures of more than one structure. Three distinct phases were identified with different diffraction characteristics: (1) hexagonal (P6/mcc) Cs-rich beryl; (2) hexagonal–rhombohedral ($R\overline 3 c$) twinned pezzottaite; (3) incommensurate phases with cell dimensions resembling those of beryl with a doubled c-dimension and l indices deviating from integer values by ±0.05–0.10. Beryl (P6/mcc) structures refined to R1 indices from 2.36 to 2.91% and pezzottaite structures refined to R1 indices from 3.31 to 5.83%. In pezzottaite, the Cs1 and Cs2 sites are each occupied by Cs+, Rb+ and (H2O) with Cs+ showing a preference for Cs1; and the Na1 and Na2 sites are occupied by Na+ and Ca2+. Na+ bonds to one (H2O) group and (H2O) bonds to one Na+. The ordering of (Cs+ + Rb+) and (Na+ + Ca2+) in pezzottaite is driven by the incident bond-valence requirements of the anions coordinating the (LiO4) tetrahedron. The valence-sum rule is maintained through the (Cs+ + Rb+) + Li+ → □ + Be2+ variation in beryl by cooperative relaxation of bonds at the Si and Be tetrahedra, and in pezzottaite by cooperative relaxation of bonds at the Si, Al and Li tetrahedra. The valence-sum rule mandates that Na+ must bond to one channel (type-II) (H2O) group which, when combined with the constraint of electroneutrality, requires that compositions along the beryl–pezzottaite join must lie below the line (Cs+ + Rb+) + 2(Na+ + Ca2+) = 1 – 2Ca2+ apfu. The occurrence of an incommensurate phase at intermediate compositions is due to the interaction of the species in adjacent columns of the P6/mcc beryl structure.
Astrochemical models treat dust surfaces as ice covered. We investigate the effects of implementing increased bare dust binding energies of CO and S-bearing species on the chemistry in the outflows of asymptotic giant branch (AGB) stars. We demonstrate the potential for improving agreement with observations in the outflow of IK Tau.
Increasing the binding energies to measured and computationally derived values in high mass-loss AGB outflows increased the production of daughter species. Switching from a high binding energy on bare dust to weaker binding to ice, the gas phase abundance increased at a radius in agreement with observations of IK Tau, suggesting that displacement of bound species could contribute to this observational puzzle. Using a strong binding to bare dust, a gas phase increase was not observed, however parent species concentrations had to be increased by around a factor of four to explain observed concentrations.
Binary interaction with a stellar or planetary companion has been proposed to be the driving mechanism behind large-scale asymmetries, such as spirals and disks, observed within AGB outflows. We developed the first chemical kinetics model that takes the effect of a stellar companions’s UV radiation into account. The presence of a stellar companion can initiate a rich photochemistry in the inner wind. Its impact is determined by the intensity of the UV radiation and the extinction the radiation experiences. The outcome of the inner wind photochemistry depends on the balance between two-body reactions and photoreactions. If photoreactions dominate, the outflow can appear molecule-poor. If two-body reactions dominate, chemical complexity within the outflow can increase, yielding daughter species with a large inner wind abundance. A comprehensive view on the molecular content of the outflow, especially combined with abundance profiles, can point towards the presence of a stellar companion.
The rectorite, a regular mixed layer mineral consisting of dioctahedral swelling and non-swelling 2:1 layers, from North Little Rock, Arkansas, was studied to define the crystal chemistry and structural parameters (e.g. layer charge of the different layers, presence of cis/trans-vacancies). X-ray diffraction, simultaneous thermal analysis coupled with mass spectrometry, X-ray fluorescence and cation exchange capacity are used to characterize this rectorite. The rectorite has a coefficient of variation (CV) of 0.19 and a cation exchange capacity of 60 cmol(+)/kg, as determined by the ammonium acetate method. The mineral is best described as a regular interstratification of brammallite-like and highcharged beidellite-like layers. Dehydration occurs at ≈118°C with a mass loss of 6.77% and dehydroxylation occurs in two steps at 470°C and 588°C with an overall mass loss of 4.67%. Peak decomposition of the mass spectrometer curve of evolved water shows ≈20% peak area with a maximum higher than 600°C, indicating ≈20% cis-vacant layers.
Five povondraite crystals from San Francisco Mine, Villa Tunari, Bolivia, have been structurally and chemically characterised by single-crystal X-ray diffraction and electron microprobe analysis. For the first time, this characterisation is accompanied by Mössbauer spectroscopic and single-crystal infrared spectroscopic data, which show the exclusive presence of Fe3+ at both the octahedrally-coordinated Y and Z sites as well as slight disorder of (OH) and O over the O(1) and O(3) sites.
The data obtained along with those for earlier-studied bosiite and oxy-dravite oxy-tourmalines show a complete substitution series described by the reaction YFe3+3 + ZMg + ZFe3+4 ↔ YAl2 + YMg + ZAl5 (i.e. Fe3+Al–1) with variation of the structural parameters dominated by Fe3+ (or Al). Povondraite is the tourmaline member having the largest unit-cell parameters due to the larger size of Fe3+ relative to other trivalent cations (V > Cr > Al). In the tourmaline-supergroup minerals, the a and c unit-cell parameters vary from ~15.60 Å to ~16.25 Å and ~7.00 Å to ~7.50 Å, respectively. Their values increase with increasing Fe3+ or decreasing Al. End-member compositions related to the smallest and largest a and c parameters are, respectively, NaAl3Al6(Si3B3O18)(BO3)3(OH)3(OH) (synthetic tourmaline) and NaFe3+3(Fe3+4Mg2)(Si6O18)(BO3)3(OH)3O (povondraite).
This study describes a new variety of chalcedony with a unique inhomogeneous bluish green hue, named aquaprase. It was discovered in Africa and is considered to be a valuable addition to the gem trade. A multi-methodological approach was used to examine its chemistry, mineralogy and microstructure, which were then compared to those of chrysoprase and agate, two of the most popular varieties of chalcedony. Optical microscopy revealed a complex microstructural heterogeneity in the different colour intensity areas/bands of aquaprase and agate, whereas chrysoprase exhibited a more homogeneous coexistence of micro- and cryptocrystalline quartz. High-resolution synchrotron XRD was essential for highlighting the complex assemblage of various types of α-quartz in aquaprase and agate (which differ in terms of crystal size and/or cell parameters). Micro-Raman spectroscopy revealed α-quartz and moganite in all three varieties of chalcedony and the presence of the nickel-bearing layered silicate mineral, willemseite, in chrysoprase, which is responsible for its green colouration. The chemical analysis displayed a homogeneous composition of agate, as well as high levels of nickel content in the chrysoprase variety. Aquaprase showed significant amounts (ppm by weight) of trace elements (Al, Mg, Na, K, Ca, Ti, U and Fe) characteristic of its formation environment, as well as high values of Cr, which are thought to be the cause of its bluish green colouration.
Post-asymptotic giant branch (post-AGB) binaries are surrounded by dusty circumbinary disks and exhibit unexpected orbital properties resulting from poorly understood binary interaction processes. Re-accreted gas from the circumbinary disk alters the photospheric chemistry of the post-AGB star, producing a characteristic underabundance of refractory elements that correlates with condensation temperature – a phenomenon known as chemical depletion. This work investigates how re-accretion from a disk drives chemical depletion, and the impact accreted matter has on post-AGB evolution. We used the MESA code to evolve 0.55 and 0.60 M$_{\odot}$ post-AGB stars with the accretion of refractory element-depleted gas from a circumbinary disk. Our study adopts observationally-constrained initial accretion rates and disk masses to reproduce the chemical depletion patterns of six well-studied post-AGB binary stars: EP Lyr, HP Lyr, IRAS 17038-4815, IRAS 09144-4933, HD 131356, and SX Cen. We find high accretion rates ($\gt 10^{-7}$ M$_{\odot}\,\mathrm{yr}^{-1}$) and large disk masses ($\gtrsim10^{-2}$ M$_{\odot}$) necessary to reproduce observed depletion, particularly in higher-mass, hotter post-AGB stars ($T_{\textrm{eff}}\gtrsim$ 6 000 K). A slower evolution (lower core mass) is required to reproduce cooler ($T_{\textrm{eff}}\lesssim$ 5 000 K) depleted post-AGB stars. Rapid accretion significantly impacts post-AGB evolution, stalling stars at cooler effective temperatures and extending post-AGB lifetimes by factors of around 3 to 10. Despite this, extended post-AGB timescales remain within or below the planetary nebula visibility timescale, suggesting accretion cannot account for the observed lack of ionised PNe in post-AGB binaries. Our findings constrain accretion-flow parameters and advance our understanding of disk-binary interactions in post-AGB systems.
Metal–organic polyhedra (MOPs) are discrete, porous metal–organic assemblies known for their wide-ranging applications in separation, drug delivery, and catalysis. As part of The World Avatar (TWA) project—a universal and interoperable knowledge model—we have previously systematized known MOPs and expanded the explorable MOP space with novel targets. Although these data are available via a complex query language, a more user-friendly interface is desirable to enhance accessibility. To address a similar challenge in other chemistry domains, the natural language question-answering system “Marie” has been developed; however, its scalability is limited due to its reliance on supervised fine-tuning, which hinders its adaptability to new knowledge domains. In this article, we introduce an enhanced database of MOPs and a first-of-its-kind question-answering system tailored for MOP chemistry. By augmenting TWA’s MOP database with geometry data, we enable the visualization of not just empirically verified MOP structures but also machine-predicted ones. In addition, we renovated Marie’s semantic parser to adopt in-context few-shot learning, allowing seamless interaction with TWA’s extensive MOP repository. These advancements significantly improve the accessibility and versatility of TWA, marking an important step toward accelerating and automating the development of reticular materials with the aid of digital assistants.
Detailed understanding of the action of biological molecular machines must overcome the challenge of gaining a clear knowledge of the corresponding free-energy landscape. An example for this is the elucidation of the nature of converting chemical energy to torque and work in the rotary molecular motor of F1-ATPase. A major part of the challenge involves understanding the rotary–chemical coupling from a non-phenomenological structure/energy description. Here we focused on using a coarse-grained model of F1-ATPase to generate a structure-based free-energy landscape of the rotary–chemical process of the whole system. In particular, we concentrated on exploring the possible impact of the position of the catalytic dwell on the efficiency and torque generation of the molecular machine. It was found that the experimentally observed torque can be reproduced with landscapes that have different positions for the catalytic dwell on the rotary–chemical surface. Thus, although the catalysis is undeniably required for torque generation, the experimentally observed position of the catalytic dwell at 80° might not have a clear advantage for the force generation by F1-ATPase. This further implies that the rotary–chemical couplings in these biological motors are quite robust and their efficiencies do not depend explicitly on the position of the catalytic dwells. Rather, the specific positioning of the dwells with respect to the rotational angle is a characteristic arising due to the structural construct of the molecular machine and might not bear any clear connection to the thermodynamic efficiency for the system.
Cosmetics, including makeup, perfumes, and facial care products, have a significant impact on the environment and society, particularly as they are used by many consumers daily. The industry's continued growth further contributes to this impact. This paper reviews 365 articles on existing research on sustainable cosmetics. Findings of this review showed that Italy, Brazil, and Spain are the countries with the highest number of research articles. It was also noted that many studies were from chemical and pharmaceutical disciplines, whereas there is minimal research through a social science lens. These insights provide avenues for future sustainability research in the cosmetics industry.
Technical summary
Cosmetics have become an essential part of daily life, but their impact on the environment and society cannot be ignored. With the cosmetics industry experiencing almost continuous growth, it is imperative to ensure its sustainability. While several studies have examined various aspects of cosmetics and sustainability, there is no comprehensive overview of the literature in this field. To address this gap, this review aims to categorize the extant literature thematically and identify areas that require further research. A systematic review of 365 selected journal articles published from 1992 to 2022 revealed several insights. Firstly, the number of publications in this area has increased significantly over the years. Secondly, Italy has the highest number of publications, and Sustainability is the most popular publication outlet. Thirdly, research output from chemistry, chemical engineering, and pharmacy disciplines is abundant, while social science disciplines have comparatively few studies. Fourthly, experimental procedures are the most commonly used research methods. Finally, ‘process and technology’ is the most studied area, while ‘stakeholder behavior’ is the least studied area. These findings highlight research gaps and suggest future research directions to promote sustainability in the cosmetics industry.
Social media summary
This review looks at 30 years of research on sustainable cosmetics and identifies areas that need to be explored.