We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This work attempts to better understand the significance of morphological diversity among fungal-algal contact zones present in lichens. We used TEM to examine a variety of lichen symbioses involving non-trebouxialean green algae that show intraparietal penetration by the mycobiont. A principal focus was on Endocarpon pusillum, a well-known member of a family (Verrucariaceae; Eurotiomycetes) previously reported to be characterized by unwalled haustoria exposing a naked fungal protoplast. Peg-like haustoria arose from an inner layer(s) of the mycobiont cell wall that broke through outer layers and penetrated a short distance into the wall of the green algal symbiont (Diplosphaera). In both fungal and algal cells at the contact interface, lomasome-like vesicles and tubules occurred as modifications of the plasmalemma intermixed with wall materials at the inner surface of the cell wall. A fungal cell wall was consistently present around the haustorium, which resembled those depicted in earlier TEM studies of Verrucariaceae. Previously published micrographs of Verrucariaceae purporting to show wall-less haustoria surrounded by an empty space are believed to have been misinterpreted. However, in the isidiose Porina and foliicolous Calopadia, Byssoloma and Fellhanera species (Lecanoromycetes), we did observe extreme degrees of reduction in the mycobiont cell wall at symbiont contact interfaces. In those lichens, a broad area of the fungal cell bulged into the adjacent algal symbiont, broadly invaginating the wall of the latter and penetrating it intraparietally without differentiation of a distinct haustorial structure. The mycobiont wall surrounding such protrusions often thinned to near indistinguishability towards its extremity. The protrusion made direct contact with the algal cell wall; no empty space occurred between them. We propose that the short, peg-like intraparietal haustoria bind the symbionts and help maintain cell contacts amid the stresses of tissue expansion and shrinkage, thereby avoiding disruption of the continuous hydrophobic coating that facilitates transfer between them. Broader contact interfaces with extremely thin adjacent walls may facilitate solute flow between symbionts. Reciprocal penetration of algal protrusions into mycobiont cells, noted in Porina as well as other lichens studied previously, is a neglected but potentially significant indication that both symbionts may actively work to maintain functional contact interfaces.
It remains unclear which individuals with subthreshold depression benefit most from psychological intervention, and what long-term effects this has on symptom deterioration, response and remission.
Aims
To synthesise psychological intervention benefits in adults with subthreshold depression up to 2 years, and explore participant-level effect-modifiers.
Method
Randomised trials comparing psychological intervention with inactive control were identified via systematic search. Authors were contacted to obtain individual participant data (IPD), analysed using Bayesian one-stage meta-analysis. Treatment–covariate interactions were added to examine moderators. Hierarchical-additive models were used to explore treatment benefits conditional on baseline Patient Health Questionnaire 9 (PHQ-9) values.
Results
IPD of 10 671 individuals (50 studies) could be included. We found significant effects on depressive symptom severity up to 12 months (standardised mean-difference [s.m.d.] = −0.48 to −0.27). Effects could not be ascertained up to 24 months (s.m.d. = −0.18). Similar findings emerged for 50% symptom reduction (relative risk = 1.27–2.79), reliable improvement (relative risk = 1.38–3.17), deterioration (relative risk = 0.67–0.54) and close-to-symptom-free status (relative risk = 1.41–2.80). Among participant-level moderators, only initial depression and anxiety severity were highly credible (P > 0.99). Predicted treatment benefits decreased with lower symptom severity but remained minimally important even for very mild symptoms (s.m.d. = −0.33 for PHQ-9 = 5).
Conclusions
Psychological intervention reduces the symptom burden in individuals with subthreshold depression up to 1 year, and protects against symptom deterioration. Benefits up to 2 years are less certain. We find strong support for intervention in subthreshold depression, particularly with PHQ-9 scores ≥ 10. For very mild symptoms, scalable treatments could be an attractive option.
Patients discharged from emergency departments (ED) with antibiotics for common infections often receive unnecessarily prolonged durations, representing a target for transition of care (TOC) antimicrobial stewardship intervention.
Methods:
This study aimed to evaluate the effectiveness of TOC pharmacists’ review on decreasing the duration of discharge oral antibiotics in patients discharged from the ED at an academic medical center. Pharmacist interventions were guided by an antibiotic duration of therapy guidance focused on respiratory, urinary, and skin infections developed and implemented by the antimicrobial stewardship program. Pharmacist interventions from January 27, 2023, to December 29, 2023, were analyzed to quantify the total number of antibiotic days saved and the percentage of provider acceptance.
Results:
The ED TOC pharmacists reviewed a total of 157 oral antibiotic prescriptions. 86.6% percent of the reviews required pharmacist interventions. The most common indications for the discharge antibiotics were urinary tract infections (50.0%) and skin infections (23.4%). The total number of antibiotic days saved was 155 days with the provider acceptance rate of 76.5%. In 21% of cases, providers did not count the antibiotic doses administered in the ED, contributing to unnecessarily prolonged duration. 10.2% of patients re-presented to the ED while 6.4% of patients were hospitalized within 30 days of index ED discharge.
Conclusion:
The transitions of care pharmacist-led intervention was successful in optimizing the duration of discharge oral antibiotics in the ED utilizing prospective audit and feedback based on institutional guidance. The ED represents a high-yield setting for TOC-directed antimicrobial stewardship.
Young stellar objects (YSOs) are protostars that exhibit bipolar outflows fed by accretion disks. Theories of the transition between disk and outflow often involve a complex magnetic field structure thought to be created by the disk coiling field lines at the jet base; however, due to limited resolution, these theories cannot be confirmed with observation and thus may benefit from laboratory astrophysics studies. We create a dynamically similar laboratory system by driving a $\sim$1 MA current pulse with a 200 ns rise through a $\approx$2 mm-tall Al cylindrical wire array mounted to a three-dimensional (3-D)-printed, stainless steel scaffolding. This system creates a plasma that converges on the centre axis and ejects cm-scale bipolar outflows. Depending on the chosen 3-D-printed load path, the system may be designed to push the ablated plasma flow radially inwards or off-axis to make rotation. In this paper, we present results from the simplest iteration of the load which generates radially converging streams that launch non-rotating jets. The temperature, velocity and density of the radial inflows and axial outflows are characterized using interferometry, gated optical and ultraviolet imaging, and Thomson scattering diagnostics. We show that experimental measurements of the Reynolds number and sonic Mach number in three different stages of the experiment scale favourably to the observed properties of YSO jets with $Re\sim 10^5\unicode{x2013}10^9$ and $M\sim 1\unicode{x2013}10$, while our magnetic Reynolds number of $Re_M\sim 1\unicode{x2013}15$ indicates that the magnetic field diffuses out of our plasma over multiple hydrodynamical time scales. We compare our results with 3-D numerical simulations in the PERSEUS extended magnetohydrodynamics code.
To investigate the potential application of replacing a proportion of a perennial ryegrass (PRG) silage diet with press cake on productivity and enteric methane (CH4) emissions in late lactation and non-lactating spring-calving dairy cows, a study was undertaken in which control cows (n = 21) were offered PRG silage, while treatment cows (n = 21) were offered a diet consisting of 60% PRG press cake and 40% of the same PRG silage. Although treatment cows had higher group average dry matter intakes (DMI) and produced more enteric CH4, carbon dioxide (CO2), milk solids, protein, fat- and protein-corrected milk yield (FPCM) in late lactation, the magnitude of the difference between treatment and control cows varied from week to week (P < 0.050). When enteric CH4 per kg of milk yield, milk solids and FPCM were considered, there was no significant difference between treatment and control. Absolute enteric CH4 was higher for cows fed press cake during the non-lactating period but this tended to vary from week to week. Similarly, CO2 (P < 0.001) and hydrogen (H2; P = 0.023) differed from week to week for cows offered press cake, and cows offered PRG silage in the non-lactating period. Although there was no significant effect of diet on body weight (BW) and body condition score (BCS), when enteric CH4 was expressed on a per kg BW basis, cows offered press cake tended to produce more enteric CH4 in both late lactation and during the dry period.
Pharmacist-led initiatives providing optimization of medications during transitions of care (TOC) have shown to have a positive impact on prescribing practices and patient outcomes. This study aims to evaluate the role and impact of TOC pharmacist review of outpatient parenteral antimicrobial therapy (OPAT) prescriptions prior to hospital discharge.
Methods:
In a retrospective chart review, patients with OPAT prescriptions between November 1, 2022 and January 31, 2023 were evaluated using prescription-specific and intervention-specific data points. Prescription-specific data points included intravenous antimicrobials prescribed, indication, prescribing team, and time from OPAT prescription to TOC pharmacist review. Intervention-specific data points included antimicrobial optimization (dose/frequency, duration, and other), prescription clarification, and laboratory monitoring.
Results:
Of the 137 OPAT prescriptions evaluated, 67 required intervention by TOC pharmacists (48.9%). The General Infectious Disease Consult team placed 71.5% of OPAT prescriptions and required interventions less frequently (42.9%) compared to the other teams. Antimicrobial optimization interventions accounted for 54.2% of interventions, which were primarily related to medication dose and frequency.
Conclusion:
The TOC pharmacists can play a key role in the evaluation of OPAT prescriptions at hospital discharge. This intervention demonstrated how TOC pharmacists can effectively collaborate with the OPAT team, which builds on prior evidence of the role and value of pharmacists in the transitional care setting.
While the diversity of foliicolous lichen-forming fungi has been explored in substantial depth, relatively little attention has been paid to their algal symbionts. We studied the unicellular green phycobionts of the lecanoralean lichens Bacidina (Ramalinaceae), Byssoloma, Fellhanera and Tapellaria (Pilocarpaceae) and graphidalean Gyalectidium (Gomphillaceae) from two extratropical foliicolous communities in continental Spain and the Canary Islands. We examined the pyrenoids of algal symbionts within thalli using TEM, and obtained several algal nrSSU and rbcL sequences from whole thalli, and also from cultures isolated from some of these lichens. Pyrenoid structure and molecular sequence data provided support for recognizing Chloroidium (Watanabeales, Trebouxiophyceae) as phycobiont in thalli of Byssoloma subdiscordans and Fellhanera bouteillei (Pilocarpaceae) in both communities. Bacidina apiahica (Ramalinaceae) and Tapellaria epiphylla (Pilocarpaceae) likewise appeared to partner with Chloroidium based on the presence of the same pyrenoid type, although we were able to obtain a phycobiont sequence only from a culture isolate of the latter. These results contrast with those obtained previously from a foliicolous lichen community in southern Florida, which revealed only strains of Heveochlorella (Jaagichlorella) as phycobiont of foliicolous Pilocarpaceae and Gomphillaceae. On the other hand, the pyrenoid we observed in the phycobionts associated with Gyalectidium setiferum and G. minus corresponded to that of Heveochlorella (Jaagichlorella). However, the poor quality of the phycobiont sequence data obtained from G. minus, probably due to the presence of epibiontic algae, could not provide additional perspective on the pyrenoid structure observations. Nonetheless, clear differences in pyrenoid ultrastructure can allow Chloroidium and Heveochlorella phycobionts to be distinguished from each other in TEM. Our results indicate a greater diversity of unicellular green-algal symbionts in foliicolous communities from Spain than previously observed in other geographical areas, and suggest that further studies focused on symbiont pairing in these communities might reveal distinctive and varied patterns of phycobiont preference.
Survivors of intimate partner violence (IPV) are at risk for serious health consequences, and providing effective psychosocial interventions to support these individuals is a major global health challenge. Previous systematic reviews and meta-analyses in this field do not allow for clear conclusions about the efficacy of these interventions, owing to a narrow focus on specific subpopulations or intervention formats. This protocol presents a systematic review and meta-analysis, which will provide a comprehensive overview of the empirical evidence of various psychosocial interventions for survivors of IPV and investigate their efficacy in improving safety-related, mental health and psychosocial outcomes both overall and within homogeneous subgroups (trial registration: https://osf.io/4gp95). We will systematically search the literature databases PsycInfo, MEDLINE, Embase and CENTRAL. Randomised controlled trials evaluating the efficacy of psychosocial interventions in increasing the safety or mental health of IPV survivors compared with a control group will be eligible. We will extract relevant data from eligible studies and assess study quality using the Cochrane Risk of Bias 2 (RoB 2) tool. We will qualitatively summarise the results and we will calculate weighted effect sizes under random effect model assumption for the primary outcomes IPV, depression and post-traumatic stress disorder. We will perform subgroup analyses to investigate the moderating effects of theoretical basis, delivery mode, intensity and setting of psychosocial interventions. The resultant overview of the current body of evidence for psychosocial interventions for IPV survivors is intended to inform future research and practice.
Walking ability is related to motor co-ordination which, in rodents, can be assessed by an established test in pharmacological studies — the rotarod test. The purpose of this study was to evaluate a modified rotarod test for chickens and its relation to the often-used gait score system. At the end of their rearing period, we tested 138 male chickens (Gallus gallus domesticus) from three differing growth performance strains: Ross 308 (fast-growing; n = 46), Lohmann Dual (medium-growing; n = 46) and Lohmann Brown Plus (slow-growing; n = 46). First, the chickens’ gait scores were assessed and, immediately following this, they were placed gently onto a steady rod. The velocity of the rotating rod gradually increased, and the latency to leave the rod was recorded. By using a linear mixed model, we were able to show that the latency to leave the rotating rod was significantly predicted by the gait score. Fast-growing chickens had shorter durations on the rotating rod, and these durations were associated with gait score. We conclude that the rotarod test provides an objective alternative method for assessing walking ability in chickens without the need for intense observer training or the risk of observer biases and propose that this novel methodology has the potential to function as a precise, objective indicator of animal welfare.
Cities are becoming increasingly important to biodiversity conservation, conservation that could also benefit urban people given the importance of nature to human well-being. Urban conservation is challenging, however, given cities’ primary role as human habitats and the need to simultaneously support heterogeneous human and wild species communities in similarly heterogeneous environments. We demonstrate a framework for identifying conservation zones within cities and human and species habitat preferences within them, thereby identifying habitat attributes that management could target to support human well-being and conservation objectives. The framework first categorizes conservation zones within a city, then develops species indicator communities for each zone. Habitat preferences are identified for each indicator community using richness modelling, and human habitat preferences within zones are identified using one of several approaches. Lastly, habitat preferences are compared to identify commonalities and differences within zones. We demonstrate our framework in Iowa City (IA, USA) using songbirds, identifying similarities in human and bird habitat preferences within conservation zones that management could target to support human well-being and species conservation and differences in preferences that could be proactively managed to reduce conflict. This framework can thus identify key habitat attributes and approaches to inform conservation planning targeted to specific settings within cities.
West Nile neuroinvasive disease (WNND) is a severe neurological illness that can result from West Nile virus (WNV) infection, with long-term disability and death being common outcomes. Although WNV arrived in North America over two decades ago, risk factors for WNND are still being explored. The objective of this study was to identify WNND comorbid risk factors in the Ontario population using a retrospective, population-based cohort design. Incident WNV infections from laboratory records between 1 January 2002 – 31 December 2012 were individually-linked to health administrative databases to ascertain WNND outcomes and comorbid risk factors. WNND incidence was compared among individuals with and without comorbidities using risk ratios (RR) calculated with log binomial regression.
Three hundred and forty-five individuals developed WNND (18.3%) out of 1884 WNV infections. West Nile encephalitis was driving most associations with comorbidities. Immunocompromised (aRR 2.61 [95% CI 1.23–4.53]) and male sex (aRR 1.32 [95% CI 1.00–1.76]) were risk factors for encephalitis, in addition to age, for which each 1-year increase was associated with a 2% (aRR 1.02 [95% CI 1.02–1.03]) relative increase in risk. Our results suggest that individuals living with comorbidities are at higher risk for WNND, in particular encephalitis, following WNV infection.
Seed retention, and ultimately seed shatter, are extremely important for the efficacy of harvest weed seed control (HWSC) and are likely influenced by various agroecological and environmental factors. Field studies investigated seed-shattering phenology of 22 weed species across three soybean [Glycine max (L.) Merr.]-producing regions in the United States. We further evaluated the potential drivers of seed shatter in terms of weather conditions, growing degree days, and plant biomass. Based on the results, weather conditions had no consistent impact on weed seed shatter. However, there was a positive correlation between individual weed plant biomass and delayed weed seed–shattering rates during harvest. This work demonstrates that HWSC can potentially reduce weed seedbank inputs of plants that have escaped early-season management practices and retained seed through harvest. However, smaller individuals of plants within the same population that shatter seed before harvest pose a risk of escaping early-season management and HWSC.
A review of algal (including cyanobacterial) symbionts associated with lichen-forming fungi is presented. General aspects of their biology relevant to lichen symbioses are summarized. The genera of algae currently believed to include lichen symbionts are outlined; approximately 50 can be recognized at present. References reporting algal taxa in lichen symbiosis are tabulated, with emphasis on those published since the 1988 review by Tschermak-Woess, and particularly those providing molecular evidence for their identifications. This review is dedicated in honour of Austrian phycologist Elisabeth Tschermak-Woess (1917–2001), for her numerous and significant contributions to our knowledge of lichen algae (some published under the names Elisabeth Tschermak and Liesl Tschermak).
We experimentally investigate the effect of geometrical anisotropy for buoyant spheroidal particles rising in a still fluid. All other parameters, such as the Galileo number (the ratio of gravitational to viscous forces) $Ga \approx 6000$, the ratio of the particle to fluid density $\varGamma \approx 0.53$ and the dimensionless moment of inertia $\boldsymbol{\mathsf{I}}^*= \boldsymbol{\mathsf{I}}_p/\boldsymbol{\mathsf{I}}_f$ (with $\boldsymbol{\mathsf{I}}_p$ being the moment of inertia of the particle and $\boldsymbol{\mathsf{I}}_f$ that of the fluid in an equivalent volume), are kept constant. The geometrical aspect ratio of the spheroids, $\chi$ , is varied systematically from $\chi = 0.2$ (oblate) to 5 (prolate). Based on tracking all degrees of particle motion, we identify six regimes characterised by distinct rise dynamics. Firstly, for $0.83 \le \chi \le 1.20$, increased rotational dynamics are observed and the particle flips over semi-regularly in a ‘tumbling’-like motion. Secondly, for oblate particles with $0.29 \le \chi \le 0.75$, planar regular ‘zig–zag’ motion is observed, where the drag coefficient is independent of $\chi$. Thirdly, for the most extreme oblate geometries ($\chi \le 0.25$), a ‘flutter’-like behaviour is found, characterised by precession of the oscillation plane and an increase in the drag coefficient. For prolate geometries, we observed two coexisting oscillation modes that contribute to complex trajectories: the first is related to oscillations of the pointing vector and the second corresponds to a motion perpendicular to the particle's symmetry axis. We identify a ‘longitudinal’ regime ($1.33 \le \chi \le 2.5$), where both modes are active and a different one, the ‘broadside’-regime ($3 \le \chi \le 4$), where only the second mode is present. Remarkably, for the most prolate particles ($\chi = 5$), we observe an entirely different ‘helical’ rise with completely unique features.
Potential effectiveness of harvest weed seed control (HWSC) systems depends upon seed shatter of the target weed species at crop maturity, enabling its collection and processing at crop harvest. However, seed retention likely is influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed-shatter phenology in 13 economically important broadleaf weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after physiological maturity at multiple sites spread across 14 states in the southern, northern, and mid-Atlantic United States. Greater proportions of seeds were retained by weeds in southern latitudes and shatter rate increased at northern latitudes. Amaranthus spp. seed shatter was low (0% to 2%), whereas shatter varied widely in common ragweed (Ambrosia artemisiifolia L.) (2% to 90%) over the weeks following soybean physiological maturity. Overall, the broadleaf species studied shattered less than 10% of their seeds by soybean harvest. Our results suggest that some of the broadleaf species with greater seed retention rates in the weeks following soybean physiological maturity may be good candidates for HWSC.
Seed shatter is an important weediness trait on which the efficacy of harvest weed seed control (HWSC) depends. The level of seed shatter in a species is likely influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed shatter of eight economically important grass weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after maturity at multiple sites spread across 11 states in the southern, northern, and mid-Atlantic United States. From soybean maturity to 4 wk after maturity, cumulative percent seed shatter was lowest in the southern U.S. regions and increased moving north through the states. At soybean maturity, the percent of seed shatter ranged from 1% to 70%. That range had shifted to 5% to 100% (mean: 42%) by 25 d after soybean maturity. There were considerable differences in seed-shatter onset and rate of progression between sites and years in some species that could impact their susceptibility to HWSC. Our results suggest that many summer annual grass species are likely not ideal candidates for HWSC, although HWSC could substantially reduce their seed output during certain years.
− Agency is one of five core analytical problems in the Earth System Governance (ESG) Project’s research framework, which offers a unique approach to the study of environmental governance. − Agency in Earth System Governance draws lessons from ESG–Agency research through a systematic review of 322 peer-reviewed journal articles published between 2008 and 2016 and contained in the ESG–Agency Harvesting Database.− ESG–Agency research draws on diverse disciplinary perspectives with distinct clusters of scholars rooted in the fields of global environmental politics, policy studies, and socio-ecological systems. − Collectively, the chapters in Agency in Earth System Governance provide an accessible synthesis of some of the field’s major questions and debates and a state-of-the-art understanding of how diverse actors engage with and exercise authority in environmental governance.
− ESG–Agency scholars have embraced the notion that agent influence is complex, contingent, and context dependent, with the success of environmental governance depending considerably on propitious environmental and social conditions. − Scholars have shifted from an earlier focus on how agents influence behaviours and environmental quality in earth system governance to how they influence governance processes, with increasing focus on democracy, participation, legitimacy, transparency, and accountability. − ESG–Agency scholars employ increasingly diverse methods to integrate insights from case studies, interviews, surveys, statistical analyses, and other approaches leading to deeper and more nuanced understanding of agency in earth system governance. − Adopting more interdisciplinary, multidisciplinary, and transdisciplinary approaches to evaluating agency can foster future understandings of and contributions to earth system governance.
Fe deficiency (ID) defined as plasma ferritin <12 µg/l is associated with delayed cognitive development in early childhood and increased incidence of infections; however, the longitudinal association between early-life factors and ID in 18-month-old children in Denmark is unknown. The present study aimed to determine the prevalence of ID and to describe risk factors associated with ID in healthy 18-month-old Danish children. Blood samples, anthropometric measurements and self-reported questionnaire data had been obtained in the birth cohort, Odense Child Cohort. The questionnaires were modified from those used in the Danish National Birth Cohort. Plasma ferritin and C-reactive protein in venous, non-fasting samples were analysed in the final sample size of 370 children after exclusion of seventy-nine children due to chronic disease, acute infection, C-reactive protein >10 mg/l, twin birth or prematurity. Associations with ID were analysed by logistic regression, adjusting for sex, maternal education, duration of partial breast-feeding and current intake of milk, fish and meat. Overall, fifty-six children had ID (15·1 %). Factors associated with increased risk were exclusive breast-feeding beyond 4 months (OR 5·97; 95 % CI 1·63, 21·86) and no intake of oral Fe supplements from 6 to 12 months (OR 3·99, 95 % CI 1·33, 11·97. Duration of partial breast-feeding and current diet was not associated with ID. In conclusion, the ID prevalence was 15·1 %, and both exclusive breast-feeding beyond 4 months and no intake of oral Fe supplements from 6 to 12 months were associated with increased risk of ID in 18-month-old children.