We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The evolution of the temperature and mass balance of first-year (FYI: Site S1) and second-year (SYI: Site S2) land-fast sea ice (LFSI) in May–November were investigated using high-resolution thermistor-string-based ice mass balance buoys, borehole measurements and a numerical sea ice model. In May, the growth rate of a 0.55 m FYI ice floe (9.2 mm day−1) was twice that of 1.08 m SYI (4.7 mm day−1) in snow-free conditions. After snow accumulation on 10 June, the growth slowed down and both reached 3.5 mm day−1 by 20 July. The observed/modelled ice thicknesses were 1.38/1.47 m for S1 (26 November) and 1.70/1.84 m for S2 (30 November). The correlation coefficients between the modelled and observed average ice temperature profiles were 0.8(vertical)/0.9(temporal) for S1 and 0.89/0.97 for S2. SYI had a higher winter cold content (32.78 MJ m−2) than FYI (21.01 MJ m−2). The modelled and observed snow depths were comparable when 50% ERA5 precipitation was used as the forcing. Snow–ice and superimposed ice formation were most sensitive to the precipitation pattern, followed by the initial snow depth and initial ice thickness. The net ice growth of both FYI and SYI were inversely related to the initial ice thickness and snow depth.
We aimed to validate in-body bioelectrical impedance analysis (BIA) measures with dual-energy X-ray absorptiometry (DXA) as reference and describe the body composition (BC) profiling of Tibetan adults.
Design:
This cross-sectional study included 855 participants (391 men and 464 women). Correlation and Bland–Altman analyses were performed for method agreement of in-body BIA and DXA. BC were described by obesity and metabolic status.
Setting:
In-body BIA and DXA have not been employed to characterise the BC of the Tibetan population living in the Qinghai–Tibet Plateau.
Participants:
A total of 855 Tibetan adults, including 391 men and 464 women, were enrolled in the study.
Results:
Concordance correlation coefficient for total fat mass (FM) and total lean mass (LM) between in-body BIA and DXA were 0·91 and 0·89. The bias of in-body BIA for percentages of total FM and total LM was 0·91 % (2·46 %) and –1·74 % (–2·80 %) compared with DXA, respectively. Absolute limits of agreement were wider for total FM in obese men and women and for total LM in overweight men than their counterparts. Gradience in the distribution of total and regional FM content was observed across different BMI categories and its combinations with waist circumference and metabolic status.
Conclusions:
In-body BIA and DXA provided overall good agreement at the group level in Tibetan adults, but the agreement was inferior in participants being overweight or obese.
This study explored how collaborative writing, an often-used instructional strategy in second language (L2) learning, intersects with large-group dynamics, and investigated their potential impact on the quality of writing outcomes in an online distance learning course. Using a mixed-methods approach, the research scrutinized intra-group interaction processes in two large groups undertaking a computer-assisted language learning writing assignment and evaluated the impact of these interaction processes on their writing products. Data from discussions in both a public online forum and a private social communication platform (WeChat) were collected, systematically coded, and analysed quantitatively and qualitatively based on language functions. Data collection also included an assessment of the written products and follow-up group interviews. The findings indicate distinct interaction patterns between high-performing and low-performing groups, characterised by an expert/participant pattern and a dominant/passive pattern, respectively. Additionally, insights from the interviews shed light on these interaction patterns and the potential impact on student learning outcomes. The study suggests practical implications, highlighting the importance of task design in promoting high levels of collaborative knowledge construction to enhance students’ writing skills and L2 language learning in large-group settings.
This paper systematically investigated the impact mechanisms of proton irradiation, atomic oxygen irradiation and space debris collision, both individually and in combination, on the laser damage threshold and damage evolution characteristics of HfO2/SiO2 triple-band high-reflection films and fused silica substrates using a simulated near-Earth space radiation experimental system. For the high-reflection film samples, the damage thresholds decreased by 15.38%, 13.12% and 46.80% after proton, atomic oxygen and simulated space debris (penetration) irradiation, respectively. The coupling irradiation of the first two factors resulted in a decrease of 26.93%, while the combined effect of all the three factors led to a reduction of 63.19%. Similarly, the fused silica substrates exhibited the same pattern of laser damage performance degradation. Notably, the study employed high-precision fixed-point in situ measurement techniques to track in detail the microstructural changes, surface roughness and optical-thermal absorption intensity before and after proton and atomic oxygen irradiation at the same location, thus providing a more accurate and comprehensive analysis of the damage mechanisms. In addition, simulations were conducted to quantitatively analyze the transmission trajectories and concentration distribution lines of protons and atomic oxygen incident at specific angles into the target material. The research findings contribute to elucidating the laser damage performance degradation mechanism of transmissive elements in near-Earth space environments and provide technical support for the development of high-damage-threshold optical components resistant to space radiation.
The plant Camellia fascicularis, belonging to family Theaceae, has high ornamental and medicinal value, and rare gene resources for genetic improvement of Camellia crops, but is currently threatened with extinction because of the unique and extremely small wild populations. Molecular markers have clarified the wild plant species’ genetic diversity structure, new gene resources and relationship with crops. This will be beneficial for conservation of these valuable crop-related wild species and crop improvement. In this study, we identified 95,979 microsatellite loci from 155,011 transcriptome unigenes, and developed 14 polymorphic expressed sequence tag-derived simple sequence repeat (EST-SSR) microsatellite markers for C. fascicularis. The number of alleles (Na) per locus was 2–8 with a mean of 4.86. The genetic diversity of 40 individuals from four natural populations of C. fascicularis was analysed using these polymorphic markers. The number of alleles (Na) for EST-SSR ranged from 2 to 5, with the expected heterozygosities (He) and observed heterozygosities (Ho) in all loci ranging from 0.183 to 0.683, and from 0.201 to 0.700, respectively, implying a rich genetic variation present in wild C. fascicularis populations. Moreover, the phylogenetic analysis among four populations, using the 14 EST-SSR markers developed in this study, grouped 40 individuals into three groups, which coincide with their geographic distribution. These results showed that 14 EST-SSR markers are available for the analysis of genetic variation in C. fascicularis populations and genetic improvement of new Camellias cultivars by interspecific hybridization, and are beneficial for conservation of the endangered species.
Aberrant DNA methylation patterns in sperm are a cause of embryonic failure and infertility, and could be a critical factor contributing to male recurrent spontaneous abortion (RSA). The purpose of this study was to reveal the potential effects of sperm DNA methylation levels in patients with male RSA. We compared sperm samples collected from fertile men and oligoasthenospermia patients. Differentially methylated sequences were identified by reduced representation bisulfite sequencing (RRBS) methods. The DNA methylation levels of the two groups were compared and qRT-PCR was used to validate the expression of genes showing differential methylation. The results indicated that no difference in base distribution was observed between the normal group and the patient group. However, the chromosome methylation in these two groups was markedly different. One site was located on chromosome 8 and measured 150 bp, while the other sites were on chromosomes 9, 10, and X and measured 135 bp, 68 bp, and 136 bp, respectively. In particular, two genes were found to be hypermethylated in these patients, one gene was DYDC2 (placed in the differential methylation region of chromosome 10), and the other gene was NXF3 (located on chromosome X). Expression levels of DYDC2 and NXF3 in the RSA group were significantly lower than those in the normal group (P < 0.05). Collectively, these results demonstrated that changes in DNA methylation might be related to male RSA. Our findings provide important information regarding the potential role of sperm DNA methylation in human development.
The Huangshaping deposit is unique in southern Hunan Province, China, as it hosts economic reserves of both W–Mo and Pb–Zn mineralization, which are usually associated with granite and granodiorite porphyry in this area, respectively. This study reports results of in situ LA-MC-ICP-MS sulphur isotopic composition analyses conducted on sulphides from both W–Mo and Pb–Zn mineralization from the Huangshaping deposit with the aim of constraining ore genesis for this deposit. All samples from the proximal W–Mo mineralization have relatively uniform and high δ34S values (8.7 ‰ to 16.0 ‰), close to the range for carbonate sediments in this deposit (13.8 ‰ to 18.1 ‰). These patterns suggest that the granite porphyry in this deposit was the sulphur source for W–Mo mineralization, and that the assimilation of evaporite from the carbonate sediments led to the high δ34S values of the granite porphyry. Sulphides from the Pb–Zn mineralization have δ34S values (2.2 ‰ to 10.3 ‰) lower than those of the W–Mo mineralization, and generally increase in this paragenetic order, with the lowest δ34S values being similar to those of the basement (3.8 ‰ to 7.7 ‰). These patterns indicate that the original sulphur for the Pb–Zn mineralization was most likely derived from the basement, with input of sulphur from the carbonate sediments increasing during the evolution of ore-forming fluids. On the basis of the measured sulphur isotopic compositions, it is suggested that the ore-forming materials for the W–Mo mineralization were derived from the granite porphyry, whereas ore-forming materials extracted from the basement dominated the Pb–Zn mineralization.
Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been discovered in Wuhan and spread rapidly across China and worldwide. Characteristics of infected patients are needed to get insight into the full spectrum of the disease.
Methods:
Epidemiological and clinical information of 1738 diagnosed patients during February 7-26, 2020 in Wuhan Dongxihu Fangcang Hospital were analyzed. A total of 709 patients were followed up on symptom, mental health, isolation site, and medication after discharge.
Results:
There were 852 males and 886 females in the cohort. The average age of the patients was 48.8 y. A total of 79.98% of the patients were from Wuhan, Hubei Province. The most common initial symptoms were fever, cough, and shortness of breath. Among all the patients, 1463 had complications, with respiratory distress as the most common complication. The average duration of hospitalization was 15.95 ± 14.69 d. The most common postdischarge symptom is cough. After discharge, most patients were full of energy and chose hotel as their self-isolation site. Coronavirus disease 2019 (COVID-19) Chinese medicine No.2 prescription is the medication used most commonly by the patients after discharge.
Conclusions:
The population is generally susceptible to SARS-CoV-2. After receiving aggressive treatment of combined Chinese and Western medicine, most patients had a good prognosis and mental health after discharge.
As an attractive collector medium for hypervelocity particles, combined with outstanding physical properties and suitable compositional characteristics, SiO2 aerogel has been deployed on outer space missions and laser shock-loaded collection experiments. In this paper, impact experiments were conducted to understand the penetration process of irregular grains, irregular Al2O3 grains with two different sizes and speeds (~110 μm@7 km/s, ~251 μm@2.3 km/s) at various density silica aerogels. By classifying the shapes of projectile residues and tracks, the morphology of tracks was analyzed. It was observed that there were several kinds of typical tracks in the penetration of irregular grains, accompanied by residues with the shapes of near-sphere, polyhedron, streamlined body wedge, and rotator. The rotational behavior was demonstrated by the final status of one flake projectile as direct evidence. In addition, there was no obvious relationship between the track length and experimental parameters, which may be caused by the uncertain interaction between aerogels and irregular particles. In addition, it confirmed the existence of fragmentation, melting situation by observing the shape of the impact entrance hole. At the same time, optical coherence tomography was used to observe the detail of tracks clearly, which provided a method to characterize the tracks nondestructively.
In this paper, mathematical models of kinematics, statics and inverse dynamics are derived firstly according to the mechanical structure of leg hydraulic drive system (LHDS). Then, all the above models are integrated with MATLAB/Simulink to build the LHDS simulation model, the model not only considers influence of leg dynamic characteristics on hydraulic system but also takes into account nonlinearity, variable load characteristics and other common problems brought by hydraulic system, and solves compatibility and operation time which brought by using multiple software simultaneously. The experimental results show the simulation model built in this paper can accurately express characteristics of the system.
In this article, the development course and current research status of physiological information monitoring equipment are briefly reviewed and analyzed. The research progress of cardiopulmonary resuscitation (CPR) equipment at home and abroad, as well as the advantages and disadvantages of existing CPR equipment, are the main points of discussion. This article discusses the design feasibility and technical points of the portable integrated basic life support machine, based on existing equipment and technology, and summarizes possible interesting future research directions.
A novel ionic liquid/α-ZrP (C16MIM/α-ZrP) lamellar nanocomposite was fabricated via the electrostatic self-assembly deposition technique by using exfoliated α-ZrP nanosheets and guest molecules (1-hexadecyl-3-methylimidazolium bromide) as building blocks under mild conditions. C16MIM/α-ZrP nanocomposite was characterized by various analytical techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy, and synchronous thermal analyzer. The net interlayer spacing of α-ZrP determined by XRD confirmed that the C16MIM cations formed a monolayer arrangement between the α-ZrP nanosheets. The morphology and microstructure of C16MIM/α-ZrP composite were observed using SEM and TEM. The C16MIM/α-ZrP modified glass carbon electrode exhibited excellent electrocatalytic activity toward the oxidation of nitrite in weak base media. The results obtained with differential pulse voltammetry demonstrated that the C16MIM/α-ZrP hybrid detected nitrite linearly in the concentration range from 7.3 μM to 1.25 mM with the detection limit of 1.26 μM (S/N = 3). Additionally, the prepared sensor showed outstanding reproducibility, high stability, and anti-interference capability.
Loneliness is increasingly recognised as a serious public health issue worldwide. However, there is scarce research addressing the association between loneliness and suicide in older adults in rural China. We set out to examine loneliness and other psychosocial factors in elderly suicide cases and explore their interaction effects.
Methods
Using a 1 : 1 matched case–control design, data were collected from 242 elderly suicide cases and 242 living community controls by psychological autopsy method in rural China, including demographic characteristics, loneliness, depression, hopelessness and social support. The chi-square automatic interaction detection (CHAID) tree model and multivariable logistic regression analysis were used to explore the relationships of these factors and suicide.
Results
The CHAID tree model showed that loneliness, hopelessness and depressive symptoms were closely associated with completed suicide and that loneliness and hopelessness interacted with each other. The result of multivariable logistic regression showed that individuals who were unemployed [odds ratio (OR) = 2.344; 95% confidence interval (CI): 1.233–4.457], living alone (OR = 2.176; 95% CI: 1.113–4.254), had lower levels of subjective social support (OR = 2.185; 95% CI: 1.243–3.843), experienced depressive symptoms (OR = 6.700; 95% CI: 3.405–13.182), showed higher levels of hopelessness (OR = 7.253; 95% CI: 3.764–13.974) and felt higher levels of hopelessness × higher levels of loneliness (OR = 2.446; 95% CI: 1.089–5.492) were significantly associated with an elevated suicide risk in older people in rural China.
Conclusions
Regular evaluation of loneliness, hopelessness and depression can help detect older adults who are at risk of committing suicide. Interventions should target social support systems, particularly among people living alone, to alleviate feelings of loneliness and hopelessness. Treating depression is also key to preventing suicide among elderly people in rural China.
This article presents a brief review of our case studies of data-driven Integrated Computational Materials Engineering (ICME) for intelligently discovering advanced structural metal materials, including light-weight materials (Ti, Mg, and Al alloys), refractory high-entropy alloys, and superalloys. The basic bonding in terms of topology and electronic structures is recommended to be considered as the building blocks/units constructing the microstructures of advanced materials. It is highlighted that the bonding charge density could not only provide an atomic and electronic insight into the physical nature of chemical bond of materials but also reveal the fundamental strengthening/embrittlement mechanisms and the local phase transformations of planar defects, paving a path in accelerating the development of advanced metal materials via interfacial engineering. Perspectives on the knowledge-based modeling/simulations, machine-learning knowledge base, platform, and next-generation workforce for sustainable ecosystem of ICME are highlighted, thus to call for more duty on the developments of advanced structural metal materials and enhancement of research productivity and collaboration.
To examine urban–rural disparity in childhood stunting, wasting and malnutrition at national and subnational levels in Chinese primary-school children in 2010 and 2014.
Design
Data were obtained from two nationwide cross-sectional surveys conducted in 2010 and 2014. Malnutrition was classified using the Chinese national ‘Screening Standard for Malnutrition of Children’.
Setting
All twenty-seven mainland provinces and four municipalities of mainland China.
Participants
Children aged 7–12 years (n 215 214; 107 741 in 2010 and 107 473 in 2014) from thirty-one provinces.
Results
Stunting, wasting and malnutrition prevalence were 1·9, 12·3 and 13·7 % in 2010, but decreased to 1·0, 9·4 and 10·2 % in 2014, respectively. The prevalence of stunting, wasting and malnutrition in both urban and rural children was higher in western provinces, while lower in eastern provinces. Although the prevalence of wasting and malnutrition was higher in rural children than their urban counterparts, the urban–rural disparity in both wasting and malnutrition decreased from 2010 to 2014 (prevalence OR: wasting, 1·35 to 1·16; malnutrition, 1·50 to 1·27). A reversal occurred in 2014 in several eastern provinces where the prevalence of wasting and malnutrition in urban children surpassed their rural peers. The urban–rural disparity was larger in western provinces than eastern provinces.
Conclusions
The shrinking urban–rural disparity and the reversal in wasting and malnutrition suggest that the malnutrition situation has improved during the post-crisis period, especially in the western provinces. Region-specific policies and interventions can be useful to sustainably mitigate malnutrition in Chinese children, especially in rural areas and the western provinces.
The prevalence of impaired fasting glucose (IFG) and diabetes mellitus (DM) has reportedly increased significantly among Chinese children and adolescents. We aimed to examine the prevalence of IFG and DM, the disparities in sex and region and related risk factors among Chinese children and adolescents. A total of 16 434 Chinese children aged 6–17 years were selected from a national cross-sectional survey, and fasting glucose was measured for all participants. Overall, mean fasting plasma glucose (FPG) concentration was (4·64 (sd 0·51)) mmol/l, and the prevalence of DM and IFG was 0·10 and 1·89 %, respectively. Compared with girls, boys had higher FPG concentration (4·69 v. 4·58 mmol/l, r 0·107, P<0·001) and IFG prevalence (2·67 v. 1·07 %, rφ 0·059, P<0·001). Compared with rural children and adolescents, urban children and adolescent had higher FPG concentration (4·65 v. 4·62 mmol/l, r 0·029, P<0·001) and DM prevalence (0·15 v. 0·05 %, rφ 0·016, P<0·01). In addition, self-reported fried foods intake and overweight/obesity were positively associated with IFG, and the proportion of consuming fried foods more than or equal to once per week and overweight/obesity prevalence in boys and urban children and adolescents were significantly higher than girls and rural children and adolescents, respectively (P<0·05). Although the prevalence of IFG and DM was relatively low in Chinese children and adolescents, sex and region disparities were observed, which may be associated with differences in overweight/obesity prevalence and dietary factors.
We report on a target system supporting automated positioning of nano-targets with a precision resolution of $4~\unicode[STIX]{x03BC}\text{m}$ in three dimensions. It relies on a confocal distance sensor and a microscope. The system has been commissioned to position nanometer targets with 1 Hz repetition rate. Integrating our prototype into the table-top ATLAS 300 TW-laser system at the Laboratory for Extreme Photonics in Garching, we demonstrate the operation of a 0.5 Hz laser-driven proton source with a shot-to-shot variation of the maximum energy about 27% for a level of confidence of 0.95. The reason of laser shooting experiments operated at 0.5 Hz rather than 1 Hz is because the synchronization between the nano-foil target positioning system and the laser trigger needs to improve.
We aimed to examine the contribution of blood lipids to the association between BMI and blood pressure (BP) in children with overweight and obesity. Data were collected in elementary and high schools of Chaoyang District, Beijing, China in 2012. Participants’ weight, height, BP and fasting plasma lipid profile were measured by standard protocols. Mediation analysis was used to examine the mediation role of blood lipids on the relation between BMI and BP, with age included as a covariate. We found that in boys 8·29 % (mediation effect=0·106, P=0·012) of the association between BMI and systolic BP was mediated through TAG. TAG mediated 12·53 % (mediation effect=0·093, P=0·018) and LDL-cholesterol mediated 7·75 % (mediation effect=0·57, P=0·046) of the association between BMI and diastolic BP was mediated by TAG and LDL-cholesterol, respectively. However, blood lipids did not show the mediation effect in girls. Our findings suggested that there was a sex difference in the contribution of blood lipids to the association between BMI and BP. Controlling TAG or LDL-cholesterol may be beneficial for reducing the risk of the BMI-related high BP in overweight boys; however, this outcome is not the case when controlling TAG or LDL-cholesterol in girls. This study may provide clues to explore the underlying mechanism of the association between obesity and hypertension.
This paper presents an ensemble-based speaker recognition using unsupervised data selection. Ensemble learning is a type of machine learning that applies a combination of several weak learners to achieve an improved performance than a single learner. A speech utterance is divided into several subsets based on its acoustic characteristics using unsupervised data selection methods. The ensemble classifiers are then trained with these non-overlapping subsets of speech data to improve the recognition accuracy. This new approach has two advantages. First, without any auxiliary information, we use ensemble classifiers based on unsupervised data selection to make use of different acoustic characteristics of speech data. Second, in ensemble classifiers, we apply the divide-and-conquer strategy to avoid a local optimization in the training of a single classifier. Our experiments on the 2010 and 2008 NIST Speaker Recognition Evaluation datasets show that using ensemble classifiers yields a significant performance gain.