We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
Toroidal bubbles (TBs) represent cases of vortex rings with a gas–liquid interface where a gas vortex ring is encased within a liquid vortex ring, and can serve as effective media for mass conveyance, process mixing, noise reduction and reaction regulation. In this study, we carry out a systematic study on the interaction between a TB and a free surface. According to the high-speed photographic images from the experiments, we identify strong and weak interactions in terms of the normalized maximum free surface deformation $h_{max}^*$. Then, we perform numerical simulations based on the volume of fluid (VOF) method in the OpenFOAM platform. Based on both the experimental and the numerical results, we conclude that the Froude number, $Fr$, determines the main characteristics during the interaction process. The TB–free surface interaction is essentially the interaction between the liquid vortex ring enveloping the TB and the free surface, supplemented by the TB's complex behaviour. Next, we establish the scaling law of $h_{max}^*$ based on the energy balance condition. Based on this, we provide the critical $Fr$ and the slenderness of the TB, $\eta$, for identifying the strong and weak interactions, and a parametric plot of the interactions in terms of $Fr$ and $\eta$.
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
We present a high-energy, hundred-picosecond (ps) pulsed mid-ultraviolet solid-state laser at 266 nm by a direct second harmonic generation (SHG) in a barium borate (BaB2O4, BBO) nonlinear crystal. The green pump source is a 710 mJ, 330 ps pulsed laser at a wavelength of 532 nm with a repetition rate of 1 Hz. Under a green pump energy of 710 mJ, a maximum output energy of 253.3 mJ at 266 nm is achieved with 250 ps pulse duration resulting in a peak power of more than 1 GW, corresponding to an SHG conversion efficiency of 35.7% from 532 to 266 nm. The experimental data were well consistent with the theoretical prediction. To the best of our knowledge, this laser exhibits both the highest output energy and highest peak power ever achieved in a hundred-ps/ps regime at 266 nm for BBO-SHG.
Despite a reported high rate of mental disorders in refugees, scientific knowledge on their risk of suicide attempt and suicide is scarce. We aimed to investigate (1) the risk of suicide attempt and suicide in refugees in Sweden, according to their country of birth, compared with Swedish-born individuals and (2) to what extent time period effects, socio-demographics, labour market marginalisation (LMM) and morbidity explain these associations.
Methods
Three cohorts comprising the entire population of Sweden, 16–64 years at 31 December 1999, 2004 and 2009 (around 5 million each, of which 3.3–5.0% refugees), were followed for 4 years each through register linkage. Additionally, the 2004 cohort was followed for 9 years, to allow analyses by refugees' country of birth. Crude and multivariate hazard ratios (HRs) with 95% confidence intervals (CIs) were computed. The multivariate models were adjusted for socio-demographic, LMM and morbidity factors.
Results
In multivariate analyses, HRs regarding suicide attempt and suicide in refugees, compared with Swedish-born, ranged from 0.38–1.25 and 0.16–1.20 according to country of birth, respectively. Results were either non-significant or showed lower risks for refugees. Exceptions were refugees from Iran (HR 1.25; 95% CI 1.14–1.41) for suicide attempt. The risk for suicide attempt in refugees compared with the Swedish-born diminished slightly across time periods.
Conclusions
Refugees seem to be protected from suicide attempt and suicide relative to Swedish-born, which calls for more studies to disentangle underlying risk and protective factors.
Nickel-rich layered oxide LiNi0.8Co0.1Mn0.1O2 suffers from severe structural instability and irreversible capacity loss during cycling due to cation disorder of Li+ and Ni2+. To solve this problem, the precursor Ni0.8Co0.1Mn0.1(OH)2 and well-ordered LiNi0.8Co0.1Mn0.1O2 cathode materials were successfully synthesized via controlled crystallization and high-temperature solid-state methods. The structure, morphology, and electrochemical performance of the precursor and LiNi0.8Co0.1Mn0.1O2 powders were investigated. The results show that the precursor Ni0.8Co0.1Mn0.1(OH)2 is made of sphere-like particles composed of needle-like primary crystal and LiNi0.8Co0.1Mn0.1O2 possesses a perfect layered structure with low Li/Ni disorder. Electrochemical data demonstrate that the material rate capabilities are 203.3, 187.7, 170.4, and 163 mA h/g from 0.1C to 10C, respectively. The capacity retention is 87.9% after 100 cycles at 1C, even the cut-off voltage was increased to 4.5 V. The high discharge capacity and outstanding cycling life can be attributed to the merits of a perfect crystal lattice with low Li/Ni disorder, fast lithium ion transport, and relatively low charge transfer resistance.
To examine adherence to a Mediterranean-like diet at age 9–10 years in relation to onset of breast development (thelarche) and first menstruation (menarche).
Design:
We evaluated the associations of adherence to a Mediterranean-like diet (measured by an adapted Mediterranean-like Diet Score, range 0–9) with thelarche at baseline, age at thelarche and time to menarche. Data were collected at baseline during a clinic visit, complemented with a mailed questionnaire and three 24 hour telephone dietary recalls, followed by annual follow-up questionnaires. Multivariable Poisson regression, linear regression and Cox proportional hazards regression were used to evaluate timing of pubertal development in relation to diet adherence.
Setting:
New Jersey, USA.
Participants:
Girls aged 9 or 10 years at baseline (2006–2014, n 202).
Results:
High Mediterranean-like diet adherence (score 6–9) was associated with a lower prevalence of thelarche at baseline compared with low adherence (score 0–3; prevalence ratio = 0·65, 95 % CI 0·48, 0·90). This may have been driven by consumption of fish and non-fat/low-fat dairy. Our models also suggested a later age at thelarche with higher Mediterranean-like diet adherence. Girls with higher Mediterranean-like diet adherence had significantly longer time to menarche (hazard ratio = 0·45, 95 % CI 0·28, 0·71 for high v. low adherence). Further analysis suggested this may have been driven by vegetable and non-fat/low-fat dairy consumption.
Conclusions:
Consuming a Mediterranean-like diet may be associated with older age at thelarche and menarche. Further research is necessary to confirm our findings in other US paediatric populations and elucidate the mechanism through which Mediterranean-like diet may influence puberty timing.
SCN5A encodes sodium-channel α-subunit Nav1.5. The mutations of SCN5A can lead to hereditary cardiac arrhythmias such as the long-QT syndrome type 3 and Brugada syndrome. Here we sought to identify novel mutations in a family with arrhythmia.
Methods
Genomic DNA was isolated from blood of the proband, who was diagnosed with atrial flutter. Illumina Hiseq 2000 whole-exome sequencing was performed and an arrhythmia-related gene-filtering strategy was used to analyse the pathogenic genes. Sanger sequencing was applied to verify the mutation co-segregated in the family.
Results and conclusions
A novel missense mutation in SCN5A (C335R) was identified, and this mutation co-segregated within the affected family members. This missense mutation was predicted to result in amplitude reduction in peak Na+ current, further leading to channel protein dysfunction. Our study expands the spectrum of SCN5A mutations and contributes to genetic counselling of families with arrhythmia.
Since 2010, Jankowski’s Bunting Emberiza jankowskii has been listed as ‘Endangered’ on the IUCN Red List of Threatened Species. However, because no comprehensive surveys had been conducted, it was not known whether undiscovered populations existed elsewhere, so the population status of the species could not be assessed accurately. The aim of this study was to assess the breeding distribution and population size of Jankowski’s Bunting in China. Fifty sites in Inner Mongolia, and Jilin, Heilongjiang, Liaoning and Hebei Provinces were surveyed to locate suitable habitat and breeding populations of Jankowski’s Bunting. The surveyed sites included historical breeding distribution areas, wintering sites, and regions adjacent to historical breeding distribution areas. We confirmed that Jankowski’s Bunting has disappeared from most of its former breeding distributions, with the exceptions of Dagang, Xiergen and Tumiji. Additionally, 13 new breeding sites were discovered in Inner Mongolia. All currently known populations breed in Mongolian steppe-vegetation zones, with shrubs dominated by the natural Siberian apricot Prunus sibirica, indicating that this type of habitat is crucial for the survival of the species. Based on remote sensing, the suitable breeding habitat for Jankowski’s Bunting is estimated to be approximately 280 km2. The population size of Jankowski’s Bunting could range between 9,800 and 12,500 individuals, which is much higher than the numbers estimated in previous reports that were based on partial surveys. The suitable habitat remaining in Inner Mongolia would highly benefit from the implementation of the National Key Public Forest Protection Project. The population size of Jankowski’s Bunting is larger than previously estimated, but it is still threatened by habitat degradation and fragmentation, and our survey results reinforce the need for more research. The status of Jankowski’s Bunting in China still meets the IUCN criteria B2ab for an ‘Endangered’ species.
This study aimed to investigate the effects of dietary live yeast (LY) supplementation on growth, intestinal permeability and immunological parameters of piglets challenged with enterotoxigenic Escherichia coli K88 (ETEC). Piglets weaned at 21 d were allocated into three treatments with six pens and six piglets per pen, receiving the control diet (CON), diets supplemented with antibiotics plus zinc oxide (ANT–ZnO) and LY (Saccharomyces cerevisiae strain CNCM I-4407), respectively, for a period of 2 weeks. On day 8, thirty-six piglets were selected as control without ETEC (CON), CON–ETEC, ANT–ZnO–ETEC and LY–ETEC groups challenged with ETEC until day 10 for sample collections. Piglets fed ANT–ZnO diet had the highest average daily gain and average daily feed intake (P<0·05) during the 1st week, but ADG of piglets fed the ANT–ZnO diet was similar as piglets fed LY diet during the second week. Piglets with LY–ETEC or ANT–ZnO–ETEC had markedly lower diarrhoea score (P<0·05) than piglets with CON–ETEC during the 24 h after ETEC challenge. Relative to piglets with CON, the counts of E. coli, urinary ratio of lactulose to mannitol, plasma IL-6 concentration, mRNA abundances of innate immunity-related genes in ileum and mesenteric lymph node tissues were increased (P<0·05), whereas the villous height of jejunum and relative protein expression of ileum claudin-1 were decreased (P<0·05) in piglets with CON–ETEC; however, these parameters did not markedly change in piglets with LY–ETEC or ANT–ZnO–ETEC. In summary, dietary LY supplementation could alleviate the severity of diarrhoea in piglets with ETEC, which may be associated with the improved permeability, innate immunity and bacterial profile.
The Chinese National Antarctic Research Expedition (GHINARE) carried out three traverses from Zhongshan station to Dome A, Princess Elizabeth Land and Inaccessible Area, East Antarctic ice sheet, during the 1996/97 to 1998/99 Antarctic field seasons. The expeditions are part of the Chinese International Trans-Antarctic Scientific Expedition program. In this project, glaciological investigations of mass balance, ice temperature, ice flow, stratigraphy in snow pits and snow/firn ice cores, as well as the glaciochemical study of surface snow and shallow ice cores, have been carried out. In the 1998/99 field season, CHINARE extended the traverse route to 1128 km inland from Zhongshan station. The density profiles show that firnification over Princess Elizabeth Land and Inaccessible Area (290–1100 km along the route) is fairly slow, and the accumulation rate recovered from snow pits along the initial 460 km of the route is 4.6–21 cm (46–210 kg m–2a–1 ) water equivalent. The initial 460 km of the route can be divided into four sections based on the differences of accumulation rate. This pattern approximately coincides with the study on the Lambert Glacier basin (LGB) by Australian scientists. During the past 50 years, the trends of both air temperature and accumulation rate show a slight increase in this area, in contrast to the west side of the LGB. Data on surface accumulation rates and their spatial and temporal variability over ice-drainage areas such as the LGB are essential for precise mass-balance calculation of the whole ice sheet, and are important for driving ice-sheet models and testing atmospheric models.
An updated compilation of published and new data of major-ion (Ca, Cl, K, Mg, Na, NO3, SO4) and methylsulfonate (MS) concentrations in snow from 520 Antarctic sites is provided by the national ITASE (International Trans-Antarctic Scientific Expedition) programmes of Australia, Brazil, China, Germany, Italy, Japan, Korea, New Zealand, Norway, the United Kingdom, the United States and the national Antarctic programme of Finland. The comparison shows that snow chemistry concentrations vary by up to four orders of magnitude across Antarctica and exhibit distinct geographical patterns. The Antarctic-wide comparison of glaciochemical records provides a unique opportunity to improve our understanding of the fundamental factors that ultimately control the chemistry of snow or ice samples. This paper aims to initiate data compilation and administration in order to provide a framework for facilitation of Antarctic-wide snow chemistry discussions across all ITASE nations and other contributing groups. The data are made available through the ITASE web page (http://www2.umaine.edu/itase/content/syngroups/snowchem.html) and will be updated with new data as they are provided. In addition, recommendations for future research efforts are summarized.
Zeolite–zeolite composite composed of alumina-rich hierarchically porous ZSM-5 cores and high-silicon MFI shells was prepared by a hydrothermal synthesis procedure, in which a commercial ZSM-5 zeolite with a SiO2/Al2O3 of 36 was treated by an alkaline solution and then used as a supporter for epitaxial growth of a polycrystalline Silicalite-1 zeolite shell (denoted as MMZsa). Acid sites associated with framework Al on exterior surfaces of ZSM-5 zeolite cores are therefore passivated in different degrees by the epitaxial MFI zeolite shell. The structural, crystalline, and textural properties of the as-synthesized samples were characterized by x-ray powder diffraction (XRD), energy-dispersive x-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), N2 adsorption-desorption, in situ IR spectra of pyridine and NH3-TPD. Aluminum species were observed to transfer from the alumina-rich cores to the high-silica shells. The adjustable thickness and SiO2/Al2O3 ratio of the shell offer the as-synthesized composite a potential and high-efficiency catalyst for methanol conversion into gasoline and diesel. As compared with the commercial ZSM-5 zeolite, the composite catalyst exhibits excellent catalytic performances with a longer catalytic life as well as a higher conversion and a slightly higher yield of diesel oil.
Epidemiological evidence regarding the association between carbohydrate intake, glycaemic load (GL) and glycaemic index (GI) and risk of ovarian cancer has been mixed. Little is known about their impact on ovarian cancer risk in African-American women. Associations between carbohydrate quantity and quality and ovarian cancer risk were investigated among 406 cases and 609 controls using data from the African American Cancer Epidemiology Study (AACES). AACES is an ongoing population-based case–control study of ovarian cancer in African-Americans in the USA. Cases were identified through rapid case ascertainment and age- and site-matched controls were identified by random-digit dialling. Dietary information over the year preceding diagnosis or the reference date was obtained using a FFQ. Multivariable logistic regression models were used to estimate odds ratios and 95 % CI adjusted for covariates. The OR comparing the highest quartile of total carbohydrate intake and total sugar intake v. the lowest quartile were 1·57 (95 % CI 1·08, 2·28; Ptrend=0·03) and 1·61 (95 % CI 1·12, 2·30; Ptrend<0·01), respectively. A suggestion of an inverse association was found for fibre intake. Higher GL was positively associated with the risk of ovarian cancer (OR 1·18 for each 10 units/4184 kJ (1000 kcal); 95 % CI 1·04, 1·33). No associations were observed for starch or GI. Our findings suggest that high intake of total sugars and GL are associated with greater risk of ovarian cancer in African-American women.
People with physical illness often have psychiatric disorder and this comorbidity may have a specific influence on their risk of suicide.
Aims
To examine how physical illness and psychiatric comorbidity interact to influence risk of suicide, with particular focus on relative timing of onset of the two types of illness.
Method
Based on the national population of Denmark, individual-level data were retrieved from five national registers on 27 262 suicide cases and 468 007 gender- and birth-date matched living controls. Data were analysed using conditional logistic regression.
Results
Both suicides and controls with physical illness more often had comorbid psychiatric disorder than their physically healthy counterparts. Although both physical and psychiatric illnesses constituted significant risk factors for suicide, their relative timing of onset in individuals with comorbidity significantly differentiated the associated risk of suicide. While suicide risk was highly elevated when onsets of both physical and psychiatric illness occurred close in time to each other, regardless which came first, psychiatric comorbidity developed some time after onset of physical illness exacerbated the risk of suicide substantially.
Conclusions
Suicide risk in physically ill people varies substantially by presence of psychiatric comorbidity, particularly the relative timing of onset of the two types of illness. Closer collaboration between general and mental health services should be an essential component of suicide prevention strategies.
In 2008 January the 24th Chinese expedition team successfully deployed the Chinese Small Telescope ARray (CSTAR) to Dome A, the highest point on the Antarctic plateau. CSTAR consists of four 14.5cm optical telescopes, each with a different filter (g, r, i and open) and has a 4.5°×4.5° field of view (FOV). Based on the CSTAR data, initial statistics of astronomical observational site quality and light curves of variable objects were obtained. To reach higher photometric quality, we are continuing to work to overcome the effects of uneven cirrus cloud cirrus, optical “ghosts” and intra-pixel sensitivity. The snow surface stability is also tested for further astronomical observational instrument and for glaciology studies.
Mature porcine oocytes containing first polar bodies (Pb I) were obtained by in vitro culture of follicle oocytes from ovaries obtained from a local abattoir, and zygotes with second polar bodies (Pb II) were grown after in vitro fertilization of the mature oocytes. Extrusion, biological activity and morphology of Pb I and Pb II were statistically analysed. Polar bodies were isolated and collected from oocytes by enzyme digestion or micromanipulation. Their vigour under different preservation conditions was analysed and evaluated using a Trypan blue staining method. The results showed that 66.7% of the oocytes extruded Pb I after 40 h of in vitro mature culture of oocytes, and 49.7% of the zygotes extruded Pb II 20 h after in vitro fertilization. The efficiency of isolation of Pb II by micromanipulation significantly exceeded that by enzyme digestion, the Pb I and Pb II isolated by micromanipulation presenting with good vigour and normal morphology (95.3% versus 58.9%). The survival rates of Pb I and Pb II were 63.3% and 93.1% for 4 h at 39°C, 85.0% and 72.9% for 40 h at 4°C, and over 95.0% and 84.6% for less than 7 days at −20°C. In comparison with the above preservation conditions for Pb I and Pb II, the results for cryopreservation were best, with rates of survival as high as 89.1% for Pb I and 87.9% for Pb II for preservation periods of over a month, and rates of normal morphology of 97.8% and 95.7%, respectively. The Pb I and Pb II could be isolated and preserved effectively, for use in further research on the recombination of oocytes and zygotes.
The authors apologise for the wrong affiliations being assigned to some of the authors, given on the title page of their paper (Liu, et al., 2009) published in Zygote.
Miniature pigs are valuable for research in xenotransplantation and as models for investigating human diseases. Although many mammalian species have been cloned, the success rates have been very low, especially in the pig. In the present study, an attempt was made to optimize somatic cell nuclear transfer (SCNT) protocols for use in the production of the Guangxi Bama mini-pig. Firstly, mini-pig fibroblast cells from a new-born Guangxi Bama piglet were isolated and cultured. Cell type was identified by fluorescence immunocytochemistry (ICC); the cells expressed cimentin, but not cytoceratin and follicular stimulation hormone receptor (FSHR). Secondly, the optimal cell cycle synchronization protocol for treating fibroblast cells from the newborn piglet's testicle was investigated by contact inhibition and serum starvation. When fibroblast cells were treated by contact inhibition, a higher fusion (66.0% vs. 58.3%, p > 0.05) and blastocyst production (20.8% vs. 15.1, p > 0.05) rates were obtained than with serum starvation. Thirdly, to examine the ability of old cells to be morphologically remodelled after activation, testicular fibroblasts (passage 10–14) were introduced into enucleated oocytes; enlarged nuclei were formed in most of the reconstructed embryos at 6 h and enlarged nuclei or distinct pseudopronuclei were formed in nearly all the reconstructed embryos at 12 h. The old donor cell could be morphologically remodelled correctly and was competent to support embryo development to the blastocyst in vitro. Fourthly, the in vitro development potential of the cloned embryos was investigated using two types of donor cell: ear fibroblasts and low or high passage testicular fibroblasts. The rate of fusion was highest using low passage testicle fibroblasts (84.5% vs. 69.8% and 80.0%, p < 0.05), as was development to the blastocyst stage (14.6% vs. 7.7% and 6.3%, p < 0.05). Finally, the effect of phytohaemagglutinin (PHA) on parthenogenetic and cloned embryo development was examined. The PHA had no significant effect on the parthenogenetic embryos, but cloned embryo development to the blastocyst stage was significantly increased by PHA (10μg/ml), (13.4% vs. 5.6% and 5.6%, p < 0.05).
High-temperature titanium matrix composites reinforced with hybrid reinforcements are synthesized by common casting and hot working technologies. Tensile properties are tested at different temperatures and strain rates. Ultimate strengths of the composites are significantly enhanced under all conditions and decrease when the strain rate is lower. Equicohesive temperature of the matrix is around 873 K at the strain rate 10−3s−1 and well below 873 K at 10−5s−1. At higher temperature or lower strain rate, interfacial debonding is more drastic and reduces the strengths of composites. The materials are embrittled under creep-rupture conditions. Strict reinforcement morphology is required for more complex service conditions at high temperatures in metal matrix composites.