We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A growing number of Australians are experiencing challenges accessing and affording healthy food due to climate-related disasters, global supply chain disruptions, and rapid inflation that is affecting the cost of healthy food(1). There is limited understanding of how participation community-based food cooperatives can address these challenges and improve food security and dietary intake. This study investigated the motivations for joining and impact of participation in a community-based food cooperative called Box Divvy on self-reported food security status and intake of fruits and vegetables among a sample of Australian adults. A cross-sectional online survey was conducted among Box Divvy members, that measured sociodemographic characteristics, motivations for joining, self-reported fruit and vegetable intake (serves/week), and food insecurity status (USDA 6-item short form(2)) before and while using Box Divvy. Participants were classified as being food secure, or experiencing marginal, moderate, or severe food insecurity. Logistic regression assessed demographic predictors and self-reported change in food security status, and ANOVA examined changes in dietary intake before joining and while using Box Divvy. Of participants (n = 2764, 37% aged 35–44 years, 83% European ethnicity, 92% New South Wales residents), most joined Box Divvy to support local farmers (87.3%), and save money on healthy foods (70.6%). Around half of respondents (50.8%) reported experiencing food insecurity before joining Box Divvy (24.5% marginal, 18.4% moderate, 7.9% severe food insecurity). Univariate logistic regression identified age, household structure, and income as significant predictors of food insecurity (p < 0.001). Participants experiencing food insecurity reported significantly lower consumption of fruits and vegetables prior to joining Box Divvy compared to those who were food secure (p < 0.001). While using Box Divvy, 28.2% of participants reported experiencing food insecurity (16.6% marginal, 9.6% moderate, 2.1% severe food insecurity). The odds of food insecurity while using Box Divvy were 62% lower than before joining (OR: 0.38; 95% CI 0.34–0.43; p < 0.001). On average, participants reported their fruit intake increased by 2.5 ± 5.6 serves/week (p < 0.001), and vegetable intake increased by 3.3 ± 5.7 serves/week (p < 0.001). The mean increase was significantly greater among moderately food insecure (fruit mean difference 3.2 ± 6.5 serves/week; vegetable mean difference 3.9 ± 6.9 serves/week) and severely food insecure groups (fruit mean difference 4.4 ± 6.9 serves/week; vegetable mean difference 5.5 ± 7.7 serves/week; p < 0.001). Participation in Box Divvy significantly improved self-reported food security status and fruit and vegetable intake among a large sample of Australian adults. Notably, fruit and vegetable intake significantly increased among those experiencing moderate and severe food insecurity. This underscores the potential of community-based food cooperatives to improve food security and promote healthier eating habits among Australian adults, especially households experiencing food insecurity.
Depression is an independent risk factor for cardiovascular disease (CVD), but it is unknown if successful depression treatment reduces CVD risk.
Methods
Using eIMPACT trial data, we examined the effect of modernized collaborative care for depression on indicators of CVD risk. A total of 216 primary care patients with depression and elevated CVD risk were randomized to 12 months of the eIMPACT intervention (internet cognitive-behavioral therapy [CBT], telephonic CBT, and select antidepressant medications) or usual primary care. CVD-relevant health behaviors (self-reported CVD prevention medication adherence, sedentary behavior, and sleep quality) and traditional CVD risk factors (blood pressure and lipid fractions) were assessed over 12 months. Incident CVD events were tracked over four years using a statewide health information exchange.
Results
The intervention group exhibited greater improvement in depressive symptoms (p < 0.01) and sleep quality (p < 0.01) than the usual care group, but there was no intervention effect on systolic blood pressure (p = 0.36), low-density lipoprotein cholesterol (p = 0.38), high-density lipoprotein cholesterol (p = 0.79), triglycerides (p = 0.76), CVD prevention medication adherence (p = 0.64), or sedentary behavior (p = 0.57). There was an intervention effect on diastolic blood pressure that favored the usual care group (p = 0.02). The likelihood of an incident CVD event did not differ between the intervention (13/107, 12.1%) and usual care (9/109, 8.3%) groups (p = 0.39).
Conclusions
Successful depression treatment alone is not sufficient to lower the heightened CVD risk of people with depression. Alternative approaches are needed.
Cognitive training has shown promise for improving cognition in older adults. Aging involves a variety of neuroanatomical changes that may affect response to cognitive training. White matter hyperintensities (WMH) are one common age-related brain change, as evidenced by T2-weighted and Fluid Attenuated Inversion Recovery (FLAIR) MRI. WMH are associated with older age, suggestive of cerebral small vessel disease, and reflect decreased white matter integrity. Higher WMH load associates with reduced threshold for clinical expression of cognitive impairment and dementia. The effects of WMH on response to cognitive training interventions are relatively unknown. The current study assessed (a) proximal cognitive training performance following a 3-month randomized control trial and (b) the contribution of baseline whole-brain WMH load, defined as total lesion volume (TLV), on pre-post proximal training change.
Participants and Methods:
Sixty-two healthy older adults ages 65-84 completed either adaptive cognitive training (CT; n=31) or educational training control (ET; n=31) interventions. Participants assigned to CT completed 20 hours of attention/processing speed training and 20 hours of working memory training delivered through commercially-available Posit Science BrainHQ. ET participants completed 40 hours of educational videos. All participants also underwent sham or active transcranial direct current stimulation (tDCS) as an adjunctive intervention, although not a variable of interest in the current study. Multimodal MRI scans were acquired during the baseline visit. T1- and T2-weighted FLAIR images were processed using the Lesion Segmentation Tool (LST) for SPM12. The Lesion Prediction Algorithm of LST automatically segmented brain tissue and calculated lesion maps. A lesion threshold of 0.30 was applied to calculate TLV. A log transformation was applied to TLV to normalize the distribution of WMH. Repeated-measures analysis of covariance (RM-ANCOVA) assessed pre/post change in proximal composite (Total Training Composite) and sub-composite (Processing Speed Training Composite, Working Memory Training Composite) measures in the CT group compared to their ET counterparts, controlling for age, sex, years of education and tDCS group. Linear regression assessed the effect of TLV on post-intervention proximal composite and sub-composite, controlling for baseline performance, intervention assignment, age, sex, years of education, multisite scanner differences, estimated total intracranial volume, and binarized cardiovascular disease risk.
Results:
RM-ANCOVA revealed two-way group*time interactions such that those assigned cognitive training demonstrated greater improvement on proximal composite (Total Training Composite) and sub-composite (Processing Speed Training Composite, Working Memory Training Composite) measures compared to their ET counterparts. Multiple linear regression showed higher baseline TLV associated with lower pre-post change on Processing Speed Training sub-composite (ß = -0.19, p = 0.04) but not other composite measures.
Conclusions:
These findings demonstrate the utility of cognitive training for improving postintervention proximal performance in older adults. Additionally, pre-post proximal processing speed training change appear to be particularly sensitive to white matter hyperintensity load versus working memory training change. These data suggest that TLV may serve as an important factor for consideration when planning processing speed-based cognitive training interventions for remediation of cognitive decline in older adults.
Nonpathological aging has been linked to decline in both verbal and visuospatial memory abilities in older adults. Disruptions in resting-state functional connectivity within well-characterized, higherorder cognitive brain networks have also been coupled with poorer memory functioning in healthy older adults and in older adults with dementia. However, there is a paucity of research on the association between higherorder functional connectivity and verbal and visuospatial memory performance in the older adult population. The current study examines the association between resting-state functional connectivity within the cingulo-opercular network (CON), frontoparietal control network (FPCN), and default mode network (DMN) and verbal and visuospatial learning and memory in a large sample of healthy older adults. We hypothesized that greater within-network CON and FPCN functional connectivity would be associated with better immediate verbal and visuospatial memory recall. Additionally, we predicted that within-network DMN functional connectivity would be associated with improvements in delayed verbal and visuospatial memory recall. This study helps to glean insight into whether within-network CON, FPCN, or DMN functional connectivity is associated with verbal and visuospatial memory abilities in later life.
Participants and Methods:
330 healthy older adults between 65 and 89 years old (mean age = 71.6 ± 5.2) were recruited at the University of Florida (n = 222) and the University of Arizona (n = 108). Participants underwent resting-state fMRI and completed verbal memory (Hopkins Verbal Learning Test - Revised [HVLT-R]) and visuospatial memory (Brief Visuospatial Memory Test - Revised [BVMT-R]) measures. Immediate (total) and delayed recall scores on the HVLT-R and BVMT-R were calculated using each test manual’s scoring criteria. Learning ratios on the HVLT-R and BVMT-R were quantified by dividing the number of stimuli (verbal or visuospatial) learned between the first and third trials by the number of stimuli not recalled after the first learning trial. CONN Toolbox was used to extract average within-network connectivity values for CON, FPCN, and DMN. Hierarchical regressions were conducted, controlling for sex, race, ethnicity, years of education, number of invalid scans, and scanner site.
Results:
Greater CON connectivity was significantly associated with better HVLT-R immediate (total) recall (ß = 0.16, p = 0.01), HVLT-R learning ratio (ß = 0.16, p = 0.01), BVMT-R immediate (total) recall (ß = 0.14, p = 0.02), and BVMT-R delayed recall performance (ß = 0.15, p = 0.01). Greater FPCN connectivity was associated with better BVMT-R learning ratio (ß = 0.13, p = 0.04). HVLT-R delayed recall performance was not associated with connectivity in any network, and DMN connectivity was not significantly related to any measure.
Conclusions:
Connectivity within CON demonstrated a robust relationship with different components of memory function as well across verbal and visuospatial domains. In contrast, FPCN only evidenced a relationship with visuospatial learning, and DMN was not significantly associated with memory measures. These data suggest that CON may be a valuable target in longitudinal studies of age-related memory changes, but also a possible target in future non-invasive interventions to attenuate memory decline in older adults.
To determine if customer purchases at small food stores are associated with healthfulness of the diet as approximated by skin carotenoids.
Design:
This is a cross-sectional survey of customers in small food stores regarding demographics and food purchases. Food and beverage purchases were classified as ‘healthy’ or ‘non-healthy’ and ‘carotenoid’ v. ‘non-carotenoid’ using a systematic classification scheme. Fruit and vegetable intake was objectively assessed using a non-invasive device to measure skin carotenoids. Associations between variables of interest were examined using Pearson’s correlation coefficients, t tests and multiple linear regression analyses.
Setting:
Twenty-two small food retail stores in rural (n 7 stores) and urban (n 15) areas of North Carolina.
Participants:
Customers of small food stores
Results:
Of study participants (n 1086), 55·1 % were male, 60·0 % were African American/Black and 4·2 % were Hispanic, with a mean age of 43·5 years. Overall, 36 % purchased at least one healthy item, and 7·6 % of participants purchased a carotenoid-containing food/beverage. Healthy foods and beverages purchased included produce, lean meats, 100 % juices, plain popcorn, plain nuts, milk and yogurt. Unhealthy items included non-100 % juices, crackers, chips, candy, cakes and donuts. Purchase of a healthy or carotenoid-containing item was positively associated with skin carotenoid scores (P = 0·002 and 0·006, respectively).
Conclusions:
A relatively small proportion of customers purchased any healthy or carotenoid-containing foods and beverages, and those who did purchase healthy options had higher skin carotenoid scores. Future research should confirm these findings in different populations.
A survey was carried out to examine the attitudes of veterinarians in Taiwan towards animal welfare issues and current systems related to animal protection. The respondents were asked to express the extent to which they agreed with the importance of the Five Freedoms and relevant education in animal welfare. The survey was sent to 889 veterinarians and the response rate was 34%. According to the findings, veterinarians in Taiwan consider that current animal protection laws in Taiwan, and their relevant systems, are unable to protect animals effectively. They mostly have an uncertain attitude towards the statement that animal welfare can upgrade their professional abilities or enhance their image, in that they have a relative lack of awareness of animal welfare as well as also lacking further understanding of the importance and influence of animal welfare. However, many veterinarians strongly support the content of ‘The Five Freedoms’ and relevant training of animal welfare and ethics. Instead of denying the necessity and importance of the relevant issues, we consider that some veterinarians lack confidence in animal welfare merely because of a lack of relevant training. The results of the survey indicate that providing veterinarians with professional education of animal welfare is the first step which brooks no delay.
The corticotropin-releasing hormone receptor 2 (CRHR2) gene encodes CRHR2, which is an important element in the hypothalamic-pituitary-adrenal physiologic response towards stress culminating in hyperglycemia, insulin resistance, mood disorders and depression (MDD). CRHR2-/- mice are hypersensitive to stress, and the CRHR2 locus in humans has been linked to type 2 diabetes (T2D) and MDD.
Objectives
Several variants in the CRHR2 gene have been reported in patients with bipolar disorder, post-traumatic stress disorder, and T2D, but variants in the gene have not been investigated in families with T2D and MDD.
Methods
We genotyped 212 Italian families with T2D and MDD. We tested 17 SNPs in the CRHR2 gene using two-point parametric-linkage and linkage-disequilibrium (LD) analysis with the following models: dominant with complete-penetrance (D1), dominant with incomplete-penetrance (D2), recessive with complete-penetrance (R1) and recessive with incomplete-penetrance (R2).
Results
We detected linkage to and/or LD with: MDD for 3 SNPs/D1, 2 SNPs/D2, 3 SNPs/R1, and 3 SNPs/R2; and, T2D for 3 SNPs/D1, 2 SNPs/D2, 2 SNPs/R1 and 1 SNP/R2. Two independent SNPs were comorbid. Interestingly, the variants linked to or in LD with MDD had in general higher statistical significance level than the variants linked to T2D, despite that the families were primarily ascertained for T2D.
Conclusions
Our study shows for the first time that the CRHR2 gene which encodes CRHR2 is in linkage to and linkage disequilibrium with MDD and T2D, thereby contributing, in families with T2D, to both disorders and underlying the shared genetic pathogenesis of their comorbidity
Background: Duchenne muscular dystrophy (DMD) is a severe progressive neuromuscular disease. This study aimed to estimate the prevalence, healthcare resource utilization (HRU), and medical costs of DMD in Alberta. Methods: This retrospective study linked provincial healthcare administrative data to identify patients with DMD utilizing a modified diagnostic code algorithm, including males <30 years of age. Five-year (April 2012 to March 2017) prevalence estimates were calculated and all-cause direct HRU and costs were examined in the first-year post-diagnosis. Results: Overall, 111 patients (median age: 12.0 years (IQR 4.7-18.3)) with DMD were identified. The estimated five-year period prevalence was 35.72 (95% CI 31.88-39.91) per 100,000 persons. All-cause HRU in the first-year post-diagnosis included a mean (SD) of 0.48 (1.19) hospitalizations (length of stay: 9.37 days (36.47)), 3.96 (6.16) general practitioner visits, 28.52 (62.98) specialist visits, and 20.14 (16.49) ambulatory care visits. Mean (SD) all-cause direct costs were $18,868 ($29,206) CAD in the first-year post-diagnosis. Conclusions: Patients with DMD had multiple interactions with the healthcare system in the year following diagnosis, resulting in substantial direct medical costs. More effective treatment strategies are needed to improve health outcomes and reduce the burden of DMD.
Coarse-grained (CG) modelling with the Martini force field has come of age. By combining a variety of bead types and sizes with a new mapping approach, the newest version of the model is able to accurately simulate large biomolecular complexes at millisecond timescales. In this perspective, we discuss possible applications of the Martini 3 model in drug discovery and development pipelines and highlight areas for future development. Owing to its high simulation efficiency and extended chemical space, Martini 3 has great potential in the area of drug design and delivery. However, several aspects of the model should be improved before Martini 3 CG simulations can be routinely employed in academic and industrial settings. These include the development of automatic parameterisation protocols for a variety of molecule types, the improvement of backmapping procedures, the description of protein flexibility and the development of methodologies enabling efficient sampling. We illustrate our view with examples on key areas where Martini could give important contributions such as drugs targeting membrane proteins, cryptic pockets and protein–protein interactions and the development of soft drug delivery systems.
The most common treatment for major depressive disorder (MDD) is antidepressant medication (ADM). Results are reported on frequency of ADM use, reasons for use, and perceived effectiveness of use in general population surveys across 20 countries.
Methods
Face-to-face interviews with community samples totaling n = 49 919 respondents in the World Health Organization (WHO) World Mental Health (WMH) Surveys asked about ADM use anytime in the prior 12 months in conjunction with validated fully structured diagnostic interviews. Treatment questions were administered independently of diagnoses and asked of all respondents.
Results
3.1% of respondents reported ADM use within the past 12 months. In high-income countries (HICs), depression (49.2%) and anxiety (36.4%) were the most common reasons for use. In low- and middle-income countries (LMICs), depression (38.4%) and sleep problems (31.9%) were the most common reasons for use. Prevalence of use was 2–4 times as high in HICs as LMICs across all examined diagnoses. Newer ADMs were proportionally used more often in HICs than LMICs. Across all conditions, ADMs were reported as very effective by 58.8% of users and somewhat effective by an additional 28.3% of users, with both proportions higher in LMICs than HICs. Neither ADM class nor reason for use was a significant predictor of perceived effectiveness.
Conclusion
ADMs are in widespread use and for a variety of conditions including but going beyond depression and anxiety. In a general population sample from multiple LMICs and HICs, ADMs were widely perceived to be either very or somewhat effective by the people who use them.
The GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) is a radio continuum survey at 76–227 MHz of the entire southern sky (Declination $<\!{+}30^{\circ}$) with an angular resolution of ${\approx}2$ arcmin. In this paper, we combine GLEAM data with optical spectroscopy from the 6dF Galaxy Survey to construct a sample of 1 590 local (median $z \approx 0.064$) radio sources with $S_{200\,\mathrm{MHz}} > 55$ mJy across an area of ${\approx}16\,700\,\mathrm{deg}^{2}$. From the optical spectra, we identify the dominant physical process responsible for the radio emission from each galaxy: 73% are fuelled by an active galactic nucleus (AGN) and 27% by star formation. We present the local radio luminosity function for AGN and star-forming (SF) galaxies at 200 MHz and characterise the typical radio spectra of these two populations between 76 MHz and ${\sim}1$ GHz. For the AGN, the median spectral index between 200 MHz and ${\sim}1$ GHz, $\alpha_{\mathrm{high}}$, is $-0.600 \pm 0.010$ (where $S \propto \nu^{\alpha}$) and the median spectral index within the GLEAM band, $\alpha_{\mathrm{low}}$, is $-0.704 \pm 0.011$. For the SF galaxies, the median value of $\alpha_{\mathrm{high}}$ is $-0.650 \pm 0.010$ and the median value of $\alpha_{\mathrm{low}}$ is $-0.596 \pm 0.015$. Among the AGN population, flat-spectrum sources are more common at lower radio luminosity, suggesting the existence of a significant population of weak radio AGN that remain core-dominated even at low frequencies. However, around 4% of local radio AGN have ultra-steep radio spectra at low frequencies ($\alpha_{\mathrm{low}} < -1.2$). These ultra-steep-spectrum sources span a wide range in radio luminosity, and further work is needed to clarify their nature.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
Data on the prevalence of extrapulmonary tuberculosis (EPTB) patients are limited in many African countries including Malawi. We conducted a retrospective review of all histology reports for cancer suspected patients at Mzuzu Central Hospital (MZCH) between 2013 and 2018 to determine the proportion of EPTB cases among cancer suspected patients and characterised them epidemiologically. All reports with inconclusive findings were excluded. In total, 2214 reports were included in the review, 47 of which reported EPTB, representing 2.1% (95% CI 1.6−2.8). The incidence of EPTB was significantly associated with sex, age and HIV status. Men were more than twice (OR 2.1; 95% CI 1.2–3.9) as likely to have EPTB as women while those with HIV were more than six times (OR 6.4; 95% CI 1.7–24.8) as likely to have EPTB compared to those who were HIV-negative. EPTB demonstrated an inverse relationship with age. The highest proportion of EPTB was found from neck lymph nodes (10.3% (5.4–17.2)). A reasonable number of EPTB cases are diagnosed late or missed in Malawi's hospitals. There is a need for concerted efforts to increase EPTB awareness and likely come up with a policy to consider EPTB as a differential diagnosis in cancer suspected patients.
Residual deformation and failure are two critical issues in powder bed fusion (PBF) additive manufacturing (AM) of metal products. Residual deformation caused by the non-uniform residual stress distribution dramatically affects the quality of AM product and can result in catastrophic failure in operation. Therefore, the development of an effective numerical approach to predict residual deformation and failure characteristics of AM product is always a major concern in industrial applications.
In this paper, a numerical approach in predicting residual distortion, stress and failure in AM products is presented. The conventional inherent strain method used in welding process is modified to consider the specific characteristic of AM process, such as the influences of reheating and scanning pattern. This approach consists of three simulation steps including a detailed process simulation in small-scale, a onetime static mechanical finite element analysis in part-scale, and a material failure analysis. First, the inherent strains are calculated from a thermo-mechanical process simulation in small-scale, which considers AM process parameters, such as laser power, scanning speed and path. The physical state in deposited materials including powder, liquid and solid states are taken into account in the simulation by specifying the solidus and liquidus temperature and corresponding material properties. Then the inherent strains are applied layer by layer to the part-scale simulation, where the residual distortion and stress can be predicted efficiently. Finally, a Lagrange particle method is utilized to study the failure characteristics of AM products. Numerical examples are studied to investigate the effectiveness and applicability of present approach.
In this paper, the generation of relativistic electron mirrors (REM) and the reflection of an ultra-short laser off the mirrors are discussed, applying two-dimension particle-in-cell simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapid expansion. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads to the resonance between laser and REM. The reflected radiation near this interval and corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, a certain part of the reflected field could be selectively amplified or depressed, leading to the selective adjustment of the corresponding spectra.
Post-stroke depression (PSD) is the most common psychiatric complication facing stroke survivors and has been associated with increased distress, physical disability, poor rehabilitation, and suicidal ideation. However, the pathophysiological mechanisms underlying PSD remain unknown, and no objective laboratory-based test is available to aid PSD diagnosis or monitor progression.
Methods:
Here, an isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic approach was performed to identify differentially expressed proteins in plasma samples obtained from PSD, stroke, and healthy control subjects.
Results:
The significantly differentiated proteins were primarily involved in lipid metabolism and immunoregulation. Six proteins associated with these processes – apolipoprotein A-IV (ApoA-IV), apolipoprotein C-II (ApoC-II), C-reactive protein (CRP), gelsolin, haptoglobin, and leucine-rich alpha-2-glycoprotein (LRG) – were selected for Western blotting validation. ApoA-IV expression was significantly upregulated in PSD as compared to stroke subjects. ApoC-II, LRG, and CRP expression were significantly downregulated in both PSD and HC subjects relative to stroke subjects. Gelsolin and haptoglobin expression were significantly dysregulated across all three groups with the following expression profiles: gelsolin, healthy control > PSD > stroke subjects; haptoglobin, stroke > PSD > healthy control.
Conclusions:
Early perturbation of lipid metabolism and immunoregulation may be involved in the pathophysiology of PSD. The combination of increased gelsolin levels accompanied by decreased haptoglobin levels shows promise as a plasma-based diagnostic biomarker panel for detecting increased PSD risk in post-stroke patients.
Flax seed meal (FSM) is rich in various nutrients, especially CP and energy, and can be used as animal protein feed. In animal husbandry production, it is a long-term goal to replace soybean meal (SBM) in animal feed with other plant protein feed. However, studies on the effects of replacing SBM with FSM in fattening sheep are limited. The aim of this experiment was to study the effects of replacing a portion of SBM with FSM on nutrient digestibility, rumen microbial protein synthesis and growth performance in sheep. Thirty-six Dorper × Small Thin-Tailed crossbred rams (BW = 40.4 ± 1.73 kg, mean ± SD) were randomly assigned into four groups. The dietary treatments (forage/concentrate, 45 : 55) were isocaloric according to the nutrient requirements of rams. Soybean meal was replaced with FSM at different levels (DM basis): (1) 18% SBM (18SBM), (2) 12% SBM and 6% FSM (6FSM), (3) 6% SBM and 12% FSM (12FSM) and (4) 18% FSM (18FSM). The rams were fed in individual pens for 60 days, with the first 10 days for adaptation to diets, and then the digestibility of nutrients was determined. There was no significant difference in DM intake, but quadratic (P < 0.001) effects on the average daily gain and feed efficiency were detected, with the highest values in the 6FSM and 12FSM groups. For DM and NDF digestibility, quadratic effects were observed with the higher values in the 6FSM and 12FSM groups, but the digestibility of CP linearly decreased with the increase in FSM in the diet (P = 0.043). There was a quadratic (P < 0.001) effect of FSM inclusion rate on the estimated microbial CP yield. However, the values of intestinally absorbable dietary protein decreased linearly (P < 0.001). For the supply of metabolisable protein, both the linear (P = 0.001) and quadratic (P = 0.044) effects were observed with the lowest value in the 18FSM group. Overall, the results indicated that SBM can be effectively replaced by FSM in the diets of fattening sheep and the optimal proportion was 12.0% under the conditions of this experiment.
The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together $60+$ programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.
The neuro-endoscopy is a surgical technique that allows the neurosurgeon to maintain a visual contact while operating inside the brain of a patient. A special instrument called the neuro-endoscope is inserted in the brain until the neurosurgeon reaches his/her target. Its manipulation requires a high level of training for neurosurgeons. To enforce both quality and safety of neuro-endoscopy, we propose a robotic manipulator based on a Spherical Decoupled Mechanism. This mechanical architecture has been modified from a 5-Bar Spherical Linkages and adapted to this medical application. It is able to generate a Remote Center of Motion of 2 Degrees of Freedom. It merges the advantages of parallel mechanisms with the kinematic and control simplicity of decoupled mechanisms, while having a very simple architecture. Motion capture experiments using a brain simulation model have been performed with a team of neurosurgeons to obtain the kinematic data of the neuro-endoscope during brain exploration. Based on the identified workspace, the mechanism has been optimized using kinematic performance and architectural compactness as criteria. An optimum mechanism has been selected, showing better kinematic performances than the original 5-bar spherical linkage mechanism.