We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A depressive episode often precedes the first manic episode, making it difficult to distinguish BPD from unipolar major depressive disorder (MDD).
Aims
We use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores (PRS) that may aid early differential diagnosis.
Method
Based on individual genotypes from case–control cohorts of BPD and MDD shared through the Psychiatric Genomics Consortium, we compile case–case–control cohorts, applying a careful quality control procedure. In a resulting cohort of 51 149 individuals (15 532 BPD patients, 12 920 MDD patients and 22 697 controls), we perform a variety of GWAS and PRS analyses.
Results
Although our GWAS is not well powered to identify genome-wide significant loci, we find significant chip heritability and demonstrate the ability of the resulting PRS to distinguish BPD from MDD, including BPD cases with depressive onset (BPD-D). We replicate our PRS findings in an independent Danish cohort (iPSYCH 2015, N = 25 966). We observe strong genetic correlation between our case–case GWAS and that of case–control BPD.
Conclusions
We find that MDD and BPD, including BPD-D are genetically distinct. Our findings support that controls, MDD and BPD patients primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BPD and, importantly, BPD-D from MDD.
In this study, we examined the impact of the number and type of arterial grafts, and surgical dressing type, on deep and organ/space surgical site infection following coronary artery bypass graft procedures. Bilateral internal mammary artery grafts and negative pressure wound therapy were associated with higher odds of infection.
We present a comparison between the performance of a selection of source finders (SFs) using a new software tool called Hydra. The companion paper, Paper I, introduced the Hydra tool and demonstrated its performance using simulated data. Here we apply Hydra to assess the performance of different source finders by analysing real observational data taken from the Evolutionary Map of the Universe (EMU) Pilot Survey. EMU is a wide-field radio continuum survey whose primary goal is to make a deep ($20\mu$Jy/beam RMS noise), intermediate angular resolution ($15^{\prime\prime}$), 1 GHz survey of the entire sky south of $+30^{\circ}$ declination, and expecting to detect and catalogue up to 40 million sources. With the main EMU survey it is highly desirable to understand the performance of radio image SF software and to identify an approach that optimises source detection capabilities. Hydra has been developed to refine this process, as well as to deliver a range of metrics and source finding data products from multiple SFs. We present the performance of the five SFs tested here in terms of their completeness and reliability statistics, their flux density and source size measurements, and an exploration of case studies to highlight finder-specific limitations.
The latest generation of radio surveys are now producing sky survey images containing many millions of radio sources. In this context it is highly desirable to understand the performance of radio image source finder (SF) software and to identify an approach that optimises source detection capabilities. We have created Hydra to be an extensible multi-SF and cataloguing tool that can be used to compare and evaluate different SFs. Hydra, which currently includes the SFs Aegean, Caesar, ProFound, PyBDSF, and Selavy, provides for the addition of new SFs through containerisation and configuration files. The SF input RMS noise and island parameters are optimised to a 90% ‘percentage real detections’ threshold (calculated from the difference between detections in the real and inverted images), to enable comparison between SFs. Hydra provides completeness and reliability diagnostics through observed-deep ($\mathcal{D}$) and generated-shallow ($\mathcal{S}$) images, as well as other statistics. In addition, it has a visual inspection tool for comparing residual images through various selection filters, such as S/N bins in completeness or reliability. The tool allows the user to easily compare and evaluate different SFs in order to choose their desired SF, or a combination thereof. This paper is part one of a two part series. In this paper we introduce the Hydra software suite and validate its $\mathcal{D/S}$ metrics using simulated data. The companion paper demonstrates the utility of Hydra by comparing the performance of SFs using both simulated and real images.
Infants and children born with CHD are at significant risk for neurodevelopmental delays and abnormalities. Individualised developmental care is widely recognised as best practice to support early neurodevelopment for medically fragile infants born premature or requiring surgical intervention after birth. However, wide variability in clinical practice is consistently demonstrated in units caring for infants with CHD. The Cardiac Newborn Neuroprotective Network, a Special Interest Group of the Cardiac Neurodevelopmental Outcome Collaborative, formed a working group of experts to create an evidence-based developmental care pathway to guide clinical practice in hospital settings caring for infants with CHD. The clinical pathway, “Developmental Care Pathway for Hospitalized Infants with Congenital Heart Disease,” includes recommendations for standardised developmental assessment, parent mental health screening, and the implementation of a daily developmental care bundle, which incorporates individualised assessments and interventions tailored to meet the needs of this unique infant population and their families. Hospitals caring for infants with CHD are encouraged to adopt this developmental care pathway and track metrics and outcomes using a quality improvement framework.
This article is a clinical guide which discusses the “state-of-the-art” usage of the classic monoamine oxidase inhibitor (MAOI) antidepressants (phenelzine, tranylcypromine, and isocarboxazid) in modern psychiatric practice. The guide is for all clinicians, including those who may not be experienced MAOI prescribers. It discusses indications, drug-drug interactions, side-effect management, and the safety of various augmentation strategies. There is a clear and broad consensus (more than 70 international expert endorsers), based on 6 decades of experience, for the recommendations herein exposited. They are based on empirical evidence and expert opinion—this guide is presented as a new specialist-consensus standard. The guide provides practical clinical advice, and is the basis for the rational use of these drugs, particularly because it improves and updates knowledge, and corrects the various misconceptions that have hitherto been prominent in the literature, partly due to insufficient knowledge of pharmacology. The guide suggests that MAOIs should always be considered in cases of treatment-resistant depression (including those melancholic in nature), and prior to electroconvulsive therapy—while taking into account of patient preference. In selected cases, they may be considered earlier in the treatment algorithm than has previously been customary, and should not be regarded as drugs of last resort; they may prove decisively effective when many other treatments have failed. The guide clarifies key points on the concomitant use of incorrectly proscribed drugs such as methylphenidate and some tricyclic antidepressants. It also illustrates the straightforward “bridging” methods that may be used to transition simply and safely from other antidepressants to MAOIs.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
This chapter comprises the following sections: names, taxonomy, subspecies and distribution, descriptive notes, habitat, movements and home range, activity patterns, feeding ecology, reproduction and growth, behavior, parasites and diseases, status in the wild, and status in captivity.
OBJECTIVES/GOALS: To characterize the oncogenic potential of HNSCC cell lines harboring 17 non-canonical PIK3CA mutations. METHODS/STUDY POPULATION: Non-canonical PIK3CA mutant constructs generated via site-directed mutagenesis are subcloned into doxycycline-inducible vector pLVX-Puro. Serum-dependent HNSCC cell line (PCI-52-SD1) is then stably transfected with vectors and undergo doxycycline-induction. Cell survival is determined by depriving cells of fetal bovine serum for 72 hours and quantifying remaining cells with 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Cell proliferation and migration is evaluated with colony formation assays and transwell assays respectively. RESULTS/ANTICIPATED RESULTS: To date, the survival behavior of eight non-canonical mutants was assessed. Three mutants – Q75E, V71I, and E970K – exhibited 18.7-26.7% greater survival rate relative to cells transfected with wild-type. Five mutants – R519G, Y606C, W328S, C905S, and M1040I – demonstrated survival rates that differed only by −4.3% to +6.6% relative to wild-type. We hypothesize the three activating mutants that exhibited increased survival will also demonstrate increased cell proliferation and migratory behavior whereas the three neutral mutants will not differ from control. DISCUSSION/SIGNIFICANCE OF IMPACT: Ongoing HNSCC PI3K inhibitor trials could be more effective if all PIK3CA hyperactivation mutations are known. Identifying non-canonical mutation effects could result in greater efficacy if drugs are restricted only to those with activating mutations. CONFLICT OF INTEREST DESCRIPTION: JRG and DEJ are co-inventors of cyclic STAT3 decoy and have financial interests in STAT3 Therapeutics, Inc. STAT3 Therapeutics, Inc. holds an interest in a cyclic STAT3 decoy oligonucleotide. The remaining authors declare no conflicts.
The most important factors known to influence the eating quality of beef are well established and include both pre- and post-slaughter events with many of the determinants interacting with each other. A substantial programme of work has been conducted by the Agri-Food and Biosciences Institute in Northern Ireland aimed at quantifying those factors of most importance to the local beef industry. Post-slaughter effects such as carcase chilling and electrical stimulation, ageing, carcase hanging and cooking method have been shown to have a significant impact on eating quality when compared with pre-slaughter activities such as animal handling and lairage time in the Northern Ireland studies. However, the effect of animal breed, particularly the use of dairy breed animals, was shown to significantly improve eating quality. Many of these factors were found to interact with each other.
We present a new surface-balance and ice-motion dataset derived from high-precision GPS measurements from a network of steel poles within three icefields of the Allan Hills blue-ice area, Antarctica. The surveys were conducted over a 14 year time period. Ice-flow velocities and mass- balance estimates for the main icefield (MIF) are consistent with those from pre-GPS era measurements but have much smaller uncertainties. The current study also extends these measurements through the near-western icefield (NWIF) to the eastern edge of the mid-western icefield (MWIF). The new dataset includes, for the first time, well-constrained evidence of upward motion within the Allan Hills MIF, indicating that old ice should be present at the surface. These data and terrestrial meteorite ages suggest that paleoclimate reconstructions using the surface record within the Allan Hills MIF could potentially extend the ice-core-based record beyond the 800 000 years currently available in the EPICA Dome C core.
A composite thickness of about 25 m of sediment has been cored from the Verrill Canyon on the Scotian Slope. It is interpreted that the majority of this sequence was deposited in a glaciomarine environment during oxygen isotopic stage 2 and the top of stage 3. These sediments, as seen in high-resolution seismic reflection profiles, are well stratified, become thicker upslope, are laterally variable in thickness, and pass upslope into possible outer shelf tills. Three wedge-shaped units of incoherent reflections interfinger with the parallel reflections and terminate in water depths greater than 700 m. These wedge-shaped units are interpreted as slumped diamict and outwash deposits. The age of the uppermost wedge-shaped unit is 26,000–21,000 yr based on extrapolation of radiocarbon dates. This unit documents a late Wisconsinan glacier readvance on the outer Scotian Shelf. The underlying wedge-shaped unit, estimated to be 70,000 yrs old, extends further west along the continental slope, and may represent a more extensive early Wisconsinan ice advance. A third wedge-shaped unit, inferred to have formed during isotopic stage 6, is possibly a remnant of the first glaciation in the study area.
Technological advancements in remote sensing and telemetry provide opportunities for assessing the effects of expanding extractive industries on animal populations. Here, we illustrate the applicability of resource selection functions (RSFs) for modelling wildlife habitat selection on industrially-disturbed landscapes. We used grizzly bears (Ursus arctos) from a threatened population in Canada and surface mining as a case study. RSF predictions based on GPS radiocollared bears (nduring mining = 7; npost mining = 9) showed that males and solitary females selected areas primarily outside mineral surface leases (MSLs) during active mining, and conversely inside MSLs after mine closure. However, females with cubs selected areas within compared to outside MSLs irrespective of mining activity. Individual variability was pronounced, although some environmental- and human-related variables were consistent across reproductive classes. For males and solitary females, regional-scale RSFs yielded comparable results to site-specific models, whereas for females with cubs, modelling the two scales produced divergent results. While mine reclamation may afford opportunities for bear persistence, managing public access will likely decrease the risk of human-caused bear mortality. RSFs are powerful tools that merit widespread use in quantitative and visual investigations of wildlife habitat selection on industrially-modified landscapes, using Geographic Information System layers that precisely characterize site-specific conditions.
Bipolar disorder is a highly heritable polygenic disorder. Recent enrichment analyses suggest that there may be true risk variants for bipolar disorder in the expression quantitative trait loci (eQTL) in the brain.
Aims
We sought to assess the impact of eQTL variants on bipolar disorder risk by combining data from both bipolar disorder genome-wide association studies (GWAS) and brain eQTL.
Method
To detect single nucleotide polymorphisms (SNPs) that influence expression levels of genes associated with bipolar disorder, we jointly analysed data from a bipolar disorder GWAS (7481 cases and 9250 controls) and a genome-wide brain (cortical) eQTL (193 healthy controls) using a Bayesian statistical method, with independent follow-up replications. The identified risk SNP was then further tested for association with hippocampal volume (n = 5775) and cognitive performance(n = 342) among healthy individuals.
Results
Integrative analysis revealed a significant association between a brain eQTL rs6088662 on chromosome 20q11.22 and bipolar disorder (log Bayes factor = 5.48; bipolar disorder P = 5.85×10–5). Follow-up studies across multiple independent samples confirmed the association of the risk SNP (rs6088662) with gene expression and bipolar disorder susceptibility (P =3.54×10–8). Further exploratory analysis revealed that rs6088662 is also associated with hippocampal volume and cognitive performance in healthy individuals.
Conclusions
Our findings suggest that 20q11.22 is likely a risk region for bipolar disorder; they also highlight the informative value of integrating functional annotation of genetic variants for gene expression in advancing our understanding of the biological basis underlying complex disorders, such as bipolar disorder.
The clinical and neuropathological findings in two infants with congenital nemaline myopathy are described. One patient presented at birth with severe hypotonia, respiratory failure and contractures and died shortly after the neonatal period. The other presented at age two months with hypotonia and, following a period of clinical stability, died at age seven months from respiratory failure. Pathological findings in the fatal neonatal case revealed numerous rod bodies in lingual, pharyngeal, diaphragm and limb muscles, correlating with clinical findings. Significant, but less rod body involvement was found in the diaphragm and limb muscles of the second patient. Although a neural basis has been suggested for this disorder, no abnormalities were found in the central nervous system or in the peripheral nerves of these two severely affected patients.