We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Statins are among the most prescribed medications worldwide. Both beneficial (e.g. antidepressant and pro-cognitive) and adverse (e.g. depressogenic and cognitive-impairing) mental health outcomes have been described in clinical studies. The underlying neuropsychological mechanisms, whether positive or negative, are, however, not established. Clarifying such activities has implications for the safe prescribing and repurposing potential of these drugs, especially in people with depression.
Methods
In this double-blind, randomized, placebo-controlled experimental medicine study, we investigated the effects of simvastatin on emotional processing, reward learning, working memory, and waking salivary cortisol (WSC) in 101 people at-risk for depression due to reported high loneliness scores (mean 7.3 ± 1.2 on the UCLA scale). This trial was largely conducted during periods of social distancing due to the COVID-19 pandemic (July 2021–February 2023), and we employed a fully remote design within a UK-wide sample.
Results
High retention rates, minimal outlier data, and typical main effects of task condition (e.g. emotion) were seen in all cognitive tasks, indicating this approach was comparable to in-person testing. After 28 days, we found no statistically significant differences (F’s < 3.0, p’s > 0.20) for any of the measures of emotional processing, reward learning, working memory, and WSC.
Conclusions
Study results do not substantiate concerns regarding adverse neuropsychiatric events due to statins and support the safety of their prescribing in at-risk populations. Although other unmeasured cognitive processes may be involved, our null findings are also in line with more recent clinical evidence suggesting statins do not show antidepressant or pro-cognitive efficacy.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
3q29 deletion syndrome (3q29del) is a rare (~1:30 000) genomic disorder associated with a wide array of neurodevelopmental and psychiatric phenotypes. Prior work by our team identified clinically significant executive function (EF) deficits in 47% of individuals with 3q29del; however, the nuances of EF in this population have not been described.
Methods
We used the Behavior Rating Inventory of Executive Function (BRIEF) to perform the first in-depth assessment of real-world EF in a cohort of 32 individuals with 3q29del (62.5% male, mean age = 14.5 ± 8.3 years). All participants were also evaluated with gold-standard neuropsychiatric and cognitive assessments. High-resolution structural magnetic resonance imaging was performed on a subset of participants (n = 24).
Results
We found global deficits in EF; individuals with 3q29del scored higher than the population mean on the BRIEF global executive composite (GEC) and all subscales. In total, 81.3% of study subjects (n = 26) scored in the clinical range on at least one BRIEF subscale. BRIEF GEC T scores were higher among 3q29del participants with a diagnosis of attention deficit/hyperactivity disorder (ADHD), and BRIEF GEC T scores were associated with schizophrenia spectrum symptoms as measured by the Structured Interview for Psychosis-Risk Syndromes. BRIEF GEC T scores were not associated with cognitive ability. The BRIEF-2 ADHD form accurately (sensitivity = 86.7%) classified individuals with 3q29del based on ADHD diagnosis status. BRIEF GEC T scores were correlated with cerebellar white matter and subregional cerebellar cortex volumes.
Conclusions
Together, these data expand our understanding of the phenotypic spectrum of 3q29del and identify EF as a core feature linked to both psychiatric and neuroanatomical features of the syndrome.
We present an initial analysis of Radio Frequency Interference (RFI) flagging statistics from archived Australian SKA Pathfinder (ASKAP) observations for the ‘Survey and Monitoring of ASKAP’s RFI environment and Trends’ (SMART) project. SMART is a two-part observatoryled project combining analysis of archived observations with a dedicated, comprehensive RFI survey. The survey component covers ASKAP’s full 700–1 800 MHz frequency range, including bands not typically used due to severe RFI. Observations are underway to capture a detailed snapshot of the ASKAP RFI environment over representative 24 h periods. In addition to this dedicated survey, we routinely archive and analyse flagging statistics for all scientific observations to monitor the observatory’s RFI environment in near real-time. We use the telescope itself as a very sensitive RFI monitor and directly assess the fraction of scientific observations impacted by RFI. To this end, flag tables are now automatically ingested and aggregated as part of routine ASKAP operations for all science observations, as a function of frequency and time. The data presented in this paper come from processing all archived data for several ASKAP Survey Science Projects (SSPs). We found that the average amount of flagging due to RFI across the routinely used ‘clean’ continuum science bands is 3%. The ‘clean’ mid band from 1 293 to 1 437 MHz (excluding the 144 MHz below 1293 MHz impacted by radionavigation-satellites which is discarded before processing) is the least affected by RFI, followed by the ‘clean’ low band from 742 to 1 085 MHz. ASKAP SSPs lose most of their data to the mobile service in the low band, aeronautical service in the mid band and satellite navigation service in the 1 510–1 797 MHz high band. We also show that for some of these services, the percentage of discarded data has been increasing year-on-year. SMART provides a unique opportunity to study ASKAP’s changing RFI environment, including understanding and updating the default flagging behaviour, inferring the suitability of and calibrating RFI monitoring equipment, monitoring spectrum management compliance in the Australian Radio Quiet Zone – Western Australia (ARQZWA), and informing the implementation of a suite of RFI mitigation techniques.
Delay discounting—the extent to which individuals show a preference for smaller immediate rewards over larger delayed rewards—has been proposed as a transdiagnostic neurocognitive process across mental health conditions, but its examination in relation to posttraumatic stress disorder (PTSD) is comparatively recent. To assess the aggregated evidence for elevated delay discounting in relation to posttraumatic stress, we conducted a meta-analysis on existing empirical literature. Bibliographic searches identified 209 candidate articles, of which 13 articles with 14 independent effect sizes were eligible for meta-analysis, reflecting a combined sample size of N = 6897. Individual study designs included case-control (e.g. examination of differences in delay discounting between individuals with and without PTSD) and continuous association studies (e.g. relationship between posttraumatic stress symptom severity and delay discounting). In a combined analysis of all studies, the overall relationship was a small but statistically significant positive association between posttraumatic stress and delay discounting (r = .135, p < .0001). The same relationship was statistically significant for continuous association studies (r = .092, p = .027) and case-control designs (r = .179, p < .001). Evidence of publication bias was minimal. The included studies were limited in that many did not concurrently incorporate other psychiatric conditions in the analyses, leaving the specificity of the relationship to posttraumatic stress less clear. Nonetheless, these findings are broadly consistent with previous meta-analyses of delayed reward discounting in relation to other mental health conditions and provide further evidence for the transdiagnostic utility of this construct.
We present and evaluate the prospects for detecting coherent radio counterparts to gravitational wave (GW) events using Murchison Widefield Array (MWA) triggered observations. The MWA rapid-response system, combined with its buffering mode ($\sim$4 min negative latency), enables us to catch any radio signals produced from seconds prior to hours after a binary neutron star (BNS) merger. The large field of view of the MWA ($\sim$$1\,000\,\textrm{deg}^2$ at 120 MHz) and its location under the high sensitivity sky region of the LIGO-Virgo-KAGRA (LVK) detector network, forecast a high chance of being on-target for a GW event. We consider three observing configurations for the MWA to follow up GW BNS merger events, including a single dipole per tile, the full array, and four sub-arrays. We then perform a population synthesis of BNS systems to predict the radio detectable fraction of GW events using these configurations. We find that the configuration with four sub-arrays is the best compromise between sky coverage and sensitivity as it is capable of placing meaningful constraints on the radio emission from 12.6% of GW BNS detections. Based on the timescales of four BNS merger coherent radio emission models, we propose an observing strategy that involves triggering the buffering mode to target coherent signals emitted prior to, during or shortly following the merger, which is then followed by continued recording for up to three hours to target later time post-merger emission. We expect MWA to trigger on $\sim$$5-22$ BNS merger events during the LVK O4 observing run, which could potentially result in two detections of predicted coherent emission.
The Australian SKA Pathfinder (ASKAP) is being used to undertake a campaign to rapidly survey the sky in three frequency bands across its operational spectral range. The first pass of the Rapid ASKAP Continuum Survey (RACS) at 887.5 MHz in the low band has already been completed, with images, visibility datasets, and catalogues made available to the wider astronomical community through the CSIRO ASKAP Science Data Archive (CASDA). This work presents details of the second observing pass in the mid band at 1367.5 MHz, RACS-mid, and associated data release comprising images and visibility datasets covering the whole sky south of $\delta_{\text{J2000}}=+49^\circ$. This data release incorporates selective peeling to reduce artefacts around bright sources, as well as accurately modelled primary beam responses. The Stokes I images reach a median noise of 198 $\mu$Jy PSF$^{-1}$ with a declination-dependent angular resolution of 8.1–47.5 arcsec that fills a niche in the existing ecosystem of large-area astronomical surveys. We also supply Stokes V images after application of a widefield leakage correction, with a median noise of 165 $\mu$Jy PSF$^{-1}$. We find the residual leakage of Stokes I into V to be $\lesssim 0.9$–$2.4$% over the survey. This initial RACS-mid data release will be complemented by a future release comprising catalogues of the survey region. As with other RACS data releases, data products from this release will be made available through CASDA.
Evidence suggests inflammation may be a key mechanism by which psychosocial stress, including loneliness, predisposes to depression. Observational and clinical studies have suggested simvastatin, with its anti-inflammatory properties, may have a potential use in the treatment of depression. Previous experimental medicine trials investigating 7-day use of statins showed conflicting results, with simvastatin displaying a more positive effect on emotional processing compared with atorvastatin. It is possible that statins require longer administration in predisposed individuals before showing the expected positive effects on emotional processing.
Aims
Here, we aim to test the neuropsychological effects of 28-day simvastatin administration versus placebo, in healthy volunteers at risk for depression owing to loneliness.
Method
This is a remote experimental medicine study. One hundred participants across the UK will be recruited and randomised to either 28-day 20 mg simvastatin or placebo in a double-blind fashion. Before and after administration, participants will complete an online testing session involving tasks of emotional processing and reward learning, processes related to vulnerability to depression. Working memory will also be assessed and waking salivary cortisol samples will be collected. The primary outcome will be accuracy in identifying emotions in a facial expression recognition task, comparing the two groups across time.
A machine learning model was created to predict the electron spectrum generated by a GeV-class laser wakefield accelerator. The model was constructed from variational convolutional neural networks, which mapped the results of secondary laser and plasma diagnostics to the generated electron spectrum. An ensemble of trained networks was used to predict the electron spectrum and to provide an estimation of the uncertainty of that prediction. It is anticipated that this approach will be useful for inferring the electron spectrum prior to undergoing any process that can alter or destroy the beam. In addition, the model provides insight into the scaling of electron beam properties due to stochastic fluctuations in the laser energy and plasma electron density.
This study proposes a new practical approach for tracking institutional changes in research teamwork and productivity using commonly available institutional electronic databases such as eCV and grant management systems. We tested several definitions of interdisciplinary collaborations based on number of collaborations and their fields of discipline. We demonstrated that the extent of interdisciplinary collaboration varies significantly by academic unit, faculty appointment and seniority. Interdisciplinary grants constitute 24% of all grants but the trend has significantly increased over the last five years. Departments with more interdisciplinary grants receive more research funding. More research is needed to improve efficiency of interdisciplinary collaborations.
Objective structured clinical examinations (OSCEs) play a pivotal role in medical education assessment. The Advanced Clinical Skills (ACS) OSCE examines clinical skills in psychiatry, general practice, obstetrics and gynaecology and paediatrics. This study examined if the 2020 ACS OSCE for fourth year medical students attending the National University of Ireland, Galway, was associated with any significant result differences compared to the equivalent 2019 OSCE. Additionally, we assessed students’ satisfaction and explored any organisational difficulties in conducting a face-to-face OSCE during the COVID-19 pandemic.
Materials and methods:
This study compared anonymised data between the 2019 and 2020 ACS OSCEs and analysed anonymised student feedback pertaining to the modified 2020 OSCE.
Results:
The mean total ACS OSCE result achieved in 2020 was statistically higher compared to the 2019 OSCE [62.95% (SD = 6.21) v. 59.35% (SD = 5.54), t = 6.092, p < 0.01], with higher marks noted in psychiatry (p = 0.001), paediatrics (p = 0.001) and general practice (p < 0.001) with more students attaining honours grades (χ2 = 27.257, df = 3, p < 0.001). No difference in failure rates were found. Students reported feeling safe performing the 2020 OSCE (89.2%), but some expressed face-mask wearing impeded their communication skills (47.8%).
Conclusion:
This study demonstrates that conducting a face-to-face OSCE during the pandemic is feasible and associated with positive student feedback. Exam validity has been demonstrated as there was no difference in the overall pass rate.
Many short gamma-ray bursts (GRBs) originate from binary neutron star mergers, and there are several theories that predict the production of coherent, prompt radio signals either prior, during, or shortly following the merger, as well as persistent pulsar-like emission from the spin-down of a magnetar remnant. Here we present a low frequency (170–200 MHz) search for coherent radio emission associated with nine short GRBs detected by the Swift and/or Fermi satellites using the Murchison Widefield Array (MWA) rapid-response observing mode. The MWA began observing these events within 30–60 s of their high-energy detection, enabling us to capture any dispersion delayed signals emitted by short GRBs for a typical range of redshifts. We conducted transient searches at the GRB positions on timescales of 5 s, 30 s, and 2 min, resulting in the most constraining flux density limits on any associated transient of 0.42, 0.29, and 0.084 Jy, respectively. We also searched for dispersed signals at a temporal and spectral resolution of 0.5 s and 1.28 MHz, but none were detected. However, the fluence limit of 80–100 Jy ms derived for GRB 190627A is the most stringent to date for a short GRB. Assuming the formation of a stable magnetar for this GRB, we compared the fluence and persistent emission limits to short GRB coherent emission models, placing constraints on key parameters including the radio emission efficiency of the nearly merged neutron stars ($\epsilon_r\lesssim10^{-4}$), the fraction of magnetic energy in the GRB jet ($\epsilon_B\lesssim2\times10^{-4}$), and the radio emission efficiency of the magnetar remnant ($\epsilon_r\lesssim10^{-3}$). Comparing the limits derived for our full GRB sample (along with those in the literature) to the same emission models, we demonstrate that our fluence limits only place weak constraints on the prompt emission predicted from the interaction between the relativistic GRB jet and the interstellar medium for a subset of magnetar parameters. However, the 30-min flux density limits were sensitive enough to theoretically detect the persistent radio emission from magnetar remnants up to a redshift of $z\sim0.6$. Our non-detection of this emission could imply that some GRBs in the sample were not genuinely short or did not result from a binary neutron star merger, the GRBs were at high redshifts, these mergers formed atypical magnetars, the radiation beams of the magnetar remnants were pointing away from Earth, or the majority did not form magnetars but rather collapse directly into black holes.
The Rapid ASKAP Continuum Survey (RACS) is the first large sky survey using the Australian Square Kilometre Array Pathfinder (ASKAP), covering the sky south of $+41^\circ$ declination. With ASKAP’s large, instantaneous field of view, ${\sim}31\,\mathrm{deg}^2$, RACS observed the entire sky at a central frequency of 887.5 MHz using 903 individual pointings with 15 minute observations. This has resulted in the deepest radio survey of the full Southern sky to date at these frequencies. In this paper, we present the first Stokes I catalogue derived from the RACS survey. This catalogue was assembled from 799 tiles that could be convolved to a common resolution of $25^{\prime\prime}$, covering a large contiguous region in the declination range $\delta=-80^{\circ}$ to $+30^\circ$. The catalogue provides an important tool for both the preparation of future ASKAP surveys and for scientific research. It consists of $\sim$2.1 million sources and excludes the $|b|<5^{\circ}$ region around the Galactic plane. This provides a first extragalactic catalogue with ASKAP covering the majority of the sky ($\delta<+30^{\circ}$). We describe the methods to obtain this catalogue from the initial RACS observations and discuss the verification of the data, to highlight its quality. Using simulations, we find this catalogue detects 95% of point sources at an integrated flux density of $\sim$5 mJy. Assuming a typical sky source distribution model, this suggests an overall 95% point source completeness at an integrated flux density $\sim$3 mJy. The catalogue will be available through the CSIRO ASKAP Science Data Archive (CASDA).
Here we present stringent low-frequency (185 MHz) limits on coherent radio emission associated with a short-duration gamma-ray burst (SGRB). Our observations of the short gamma-ray burst (GRB) 180805A were taken with the upgraded Murchison Widefield Array (MWA) rapid-response system, which triggered within 20s of receiving the transient alert from the Swift Burst Alert Telescope, corresponding to 83.7 s post-burst. The SGRB was observed for a total of 30 min, resulting in a $3\sigma$ persistent flux density upper limit of 40.2 mJy beam–1. Transient searches were conducted at the Swift position of this GRB on 0.5 s, 5 s, 30 s and 2 min timescales, resulting in $3\sigma$ limits of 570–1 830, 270–630, 200–420, and 100–200 mJy beam–1, respectively. We also performed a dedispersion search for prompt signals at the position of the SGRB with a temporal and spectral resolution of 0.5 s and 1.28 MHz, respectively, resulting in a $6\sigma$ fluence upper-limit range from 570 Jy ms at DM $=3\,000$ pc cm–3 ($z\sim 2.5$) to 1 750 Jy ms at DM$=200$ pc cm–3 ($z\sim 0.1)$, corresponding to the known redshift range of SGRBs. We compare the fluence prompt emission limit and the persistent upper limit to SGRB coherent emission models assuming the merger resulted in a stable magnetar remnant. Our observations were not sensitive enough to detect prompt emission associated with the alignment of magnetic fields of a binary neutron star just prior to the merger, from the interaction between the relativistic jet and the interstellar medium (ISM) or persistent pulsar-like emission from the spin-down of the magnetar. However, in the case of a more powerful SGRB (a gamma-ray fluence an order of magnitude higher than GRB 180805A and/or a brighter X-ray counterpart), our MWA observations may be sensitive enough to detect coherent radio emission from the jet-ISM interaction and/or the magnetar remnant. Finally, we demonstrate that of all current low- frequency radio telescopes, only the MWA has the sensitivity and response times capable of probing prompt emission models associated with the initial SGRB merger event.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with $\sim$ 15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination $+41^\circ$ made over a 288-MHz band centred at 887.5 MHz.
Sarcopenic obesity is characterised by the double burden of diminished skeletal muscle mass and the presence of excess adiposity. From a mechanistic perspective, both obesity and sarcopenia are associated with sub-acute, chronic pro-inflammatory states that impede metabolic processes, disrupting adipose and skeletal functionality, which may potentiate disease. Recent evidence suggests that there is an important cross-talk between metabolism and inflammation, which has shifted focus upon metabolic-inflammation as a key emerging biological interaction. Dietary intake, physical activity and nutritional status are important environmental factors that may modulate metabolic-inflammation. This paradigm will be discussed within the context of sarcopenic obesity risk. There is a paucity of data in relation to the nature and the extent to which nutritional status affects metabolic-inflammation in sarcopenic obesity. Research suggests that there may be scope for the modulation of sarcopenic obesity with alterations in diet. The potential impact of increasing protein consumption and reconfiguration of dietary fat composition in human dietary interventions are evaluated. This review will explore emerging data with respect to if and how different dietary components may modulate metabolic-inflammation, particularly with respect to adiposity, within the context of sarcopenic obesity.
Post hoc analysis of occupational attainment and performance on a standard neurocognitive battery suggests that performance on letter-number sequencing is strongly associated with work attainment. Letter-number sequencing may warrant further investigation as a clinically useful tool to inform decisions around vocational rehabilitation.
Accurate methods for determining the duration of HIV infection at the individual level are valuable in many settings, including many critical research studies and in clinical practice (especially for acute infection). Since first published in 2003, the ‘Fiebig staging system’ has been used as the primary way of classifying early HIV infection into five sequential stages based on HIV test result patterns in newly diagnosed individuals. However, Fiebig stages can only be assigned to individuals who produce both a negative and a positive test result on the same day, on specific pairs of tests of varying ‘sensitivity’. Further, in the past 16 years HIV-testing technology has evolved substantially, and three of the five key assays used to define Fiebig stages are no longer widely used. To address these limitations, we developed an improved and more general framework for estimating the duration of HIV infection by interpreting any combination of diagnostic test results, whether obtained on single or multiple days, into an estimated date of detectable infection, or EDDI. A key advantage of the EDDI method over Fiebig staging is that it allows for the generation of a point estimate, as well as an associated credibility interval for the date of first detectable infection, for any person who has at least one positive and one negative HIV test of any kind. The tests do not have to be run on the same day; they do not have to be run during the acute phase of infection and the method does not rely on any special pairing of tests to define ‘stages’ of infection. The size of the interval surrounding the EDDI (and therefore the precision of the estimate itself) depends largely on the length of time between negative and positive tests. The EDDI approach is also flexible, seamlessly incorporating any assay for which there is a reasonable diagnostic delay estimate. An open-source, free online tool includes a user-updatable curated database of published diagnostic delays. HIV diagnostics have evolved tremendously since that original publication more than 15 years ago, and it is time to similarly evolve the methods used to estimate timing of infection. The EDDI method is a flexible and rigorous way to estimate the timing of HIV infection in a continuously evolving diagnostic landscape.
Research has shown that religious affiliation has a protective effect against deliberate self-harm. This is particularly pronounced in periods of increased religious significance, such as periods of worship, celebration, and fasting. However, no data exist as to whether this effect is present during the Christian period of Lent. Our hypothesis was that Lent would lead to decreased presentations of self-harm emergency department (ED) in a predominantly Catholic area of Ireland.
Methods
Following ethical approval, we retrospectively analysed data on presentations to the ED of University Hospital Limerick during the period of Lent and the 40 days immediately preceding it. Frequency data were compared using Pearson’s chi-squared tests in SPSS.
Results
There was no significant difference in the overall number of people presenting to the ED with self-harm during Lent compared to the 40 days preceding it (χ2 = 0.75, df = 1, p > 0.05), and there was no difference in methods of self-harm used. However, there was a significant increase in attendances with self-harm during Lent in the over 50’s age group (χ2 = 7.76, df = 1, p = 0.005).
Conclusions
Based on our study, Lent is not a protective factor for deliberate self-harm and was associated with increased presentations in the over 50’s age group. Further large-scale studies are warranted to investigate this finding as it has implications for prevention and management of deliberate self-harm.