We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Background: Late-onset Pompe disease (LOPD) is caused by a deficiency of acid α-glucosidase (GAA), leading to progressive muscle and respiratory decline. Cipaglucosidase alfa (cipa), a recombinant human GAA naturally enriched with bis-mannose-6-phosphate, exhibits improved muscle uptake but is limited by inactivation at near-neutral blood pH. Miglustat (mig), an enzyme stabiliser, binds competitively and reversibly to cipa, enhancing its stability and activity. Methods: In dose-finding studies, Gaa-/- mice were treated with cipa (20 mg/kg) +/- mig (10 mg/kg; equivalent human dose ~260 mg). Clinical study methodologies have been published (Schoser et al. Lancet Neurol 2021:20;1027–37; Schoser et al. J Neurol 2024:271;2810–23). Results: In Gaa-/- mice, cipa+mig improved muscle glycogen reduction more than cipa alone and grip strength to levels approaching wild-type mice. LOPD patients (n=11) treated with cipa alone showed dose-dependent decreases in hexose tetrasaccharide (Hex4) levels by ~15% from baseline, decreasing another ~10% with added mig (260 mg). In a head-to-head study, cipa+mig had a similar safety profile to alglucosidase alfa. Among 151 patients (three trials), mig-related adverse events occurred in 21 (13.9%), none serious. Conclusions: Mig stabilised cipa in circulation, improving cipa exposure, further reducing Hex4 levels and was well tolerated in clinical studies in patients with LOPD. Sponsored by Amicus Therapeutics, Inc.
The attitude-tracking problem of hypersonic morphing vehicles (HMVs) is investigated in this research. After introducing variable-span wings, the optimal aerodynamic shape is available throughout the entire flight mission. However, the morphing wings cause significant changes in aerodynamic coefficients and mass distribution, challenging the attitude control. Therefore, a complete design procedure for the flight control system is proposed to address the issue. Firstly, the original model and the control-oriented model of HMVs are built. Secondly, in order to eliminate the influence caused by the multisource uncertainties, an adaptive fixed-time disturbance observer combined with fuzzy control theory is established. Thirdly, the fixed-time control method is developed to stabilise hypersonic morphing vehicles based on a multivariable sliding mode manifold. The control input can be obtained directly. Finally, the effectiveness of the proposed method is proved with the help of the Lyapunov theory and simulation results.
The chemistry of Al transformation has been well documented, though little is known about the mechanisms of structural perturbation of Al precipitates by carbonates at a molecular level. The purpose of the present study was to investigate the structural perturbation of Al precipitates formed under the influence of carbonates. Initial carbonate/Al molar ratios (MRs) used were 0, 0.1, and 0.5 after aging for 32 days, then the samples were analyzed by X-ray absorption near edge structure spectroscopy (XANES), X-ray diffraction (XRD), Fourier-transform infrared absorption spectroscopy (FTIR), and chemical analysis. The XRD data were in accord with the FTIR results, which revealed that as the carbonate/Al MR was increased from 0 to 0.1, carbonate preferentially retarded the formation of gibbsite and had relatively little effect on the formation of bayerite. As the carbonate/Al MR was increased to 0.5, however, the crystallization of both gibbsite and bayerite was completely inhibited. The impact of carbonate on the nature of Al precipitates was also evident in the increase of adsorbed water and inorganic C contents with increasing carbonate/Al MR. The Al K- and L- edge XANES data provide the first evidence illustrating the change in the coordination number of Al from 6-fold to mixed 6- and 4-fold coordination in the structural network of short-range ordered (SRO) Al precipitates formed under the increasing perturbation of carbonate. The fluorescence yield spectra of the O K-edge show that the intensity of the peak at 534.5 eV assigned to σ* transitions of Al-O and O-H bonding decreased with increasing carbonate/Al MR. The XANES data, along with the evidence from XRD, FTIR, and chemical analysis showed clearly that carbonate caused the alteration of the coordination nature of the Al-O bonding through perturbation of the atomic bonding and structural configuration of Al hydroxides by complexation with Al in the SRO network of Al precipitates. The surface reactivity of an Al-O bond is related to its covalency and coordination geometry. The present findings were, therefore, of fundamental significance in understanding the low-temperature geochemistry of Al and its impacts on the transformation, transport, and fate of nutrients and pollutants in the ecosystem.
We describe a new low-frequency wideband radio survey of the southern sky. Observations covering 72–231 MHz and Declinations south of $+30^\circ$ have been performed with the Murchison Widefield Array “extended” Phase II configuration over 2018–2020 and will be processed to form data products including continuum and polarisation images and mosaics, multi-frequency catalogues, transient search data, and ionospheric measurements. From a pilot field described in this work, we publish an initial data release covering 1,447$\mathrm{deg}^2$ over $4\,\mathrm{h}\leq \mathrm{RA}\leq 13\,\mathrm{h}$, $-32.7^\circ \leq \mathrm{Dec} \leq -20.7^\circ$. We process twenty frequency bands sampling 72–231 MHz, with a resolution of 2′–45′′, and produce a wideband source-finding image across 170–231 MHz with a root mean square noise of $1.27\pm0.15\,\mathrm{mJy\,beam}^{-1}$. Source-finding yields 78,967 components, of which 71,320 are fitted spectrally. The catalogue has a completeness of 98% at ${{\sim}}50\,\mathrm{mJy}$, and a reliability of 98.2% at $5\sigma$ rising to 99.7% at $7\sigma$. A catalogue is available from Vizier; images are made available via the PASA datastore, AAO Data Central, and SkyView. This is the first in a series of data releases from the GLEAM-X survey.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
The low-frequency linearly polarised radio source population is largely unexplored. However, a renaissance in low-frequency polarimetry has been enabled by pathfinder and precursor instruments for the Square Kilometre Array. In this second paper from the POlarised GaLactic and Extragalactic All-Sky MWA Survey-the POlarised GLEAM Survey, or POGS-we present the results from our all-sky MWA Phase I Faraday Rotation Measure survey. Our survey covers nearly the entire Southern sky in the Declination range $-82^\circ$ to $+30^\circ$ at a resolution between around three and seven arcminutes (depending on Declination) using data in the frequency range 169−231 MHz. We have performed two targeted searches: the first covering 25 489 square degrees of sky, searching for extragalactic polarised sources; the second covering the entire sky South of Declination $+30^\circ$, searching for known pulsars. We detect a total of 517 sources with 200 MHz linearly polarised flux densities between 9.9 mJy and 1.7 Jy, of which 33 are known radio pulsars. All sources in our catalogues have Faraday rotation measures in the range $-328.07$ to $+279.62$ rad m−2. The Faraday rotation measures are broadly consistent with results from higher-frequency surveys, but with typically more than an order of magnitude improvement in the precision, highlighting the power of low-frequency polarisation surveys to accurately study Galactic and extragalactic magnetic fields. We discuss the properties of our extragalactic and known-pulsar source population, how the sky distribution relates to Galactic features, and identify a handful of new pulsar candidates among our nominally extragalactic source population.
This report is on the synthesis by electrospinning of multiferroic core-shell nanofibers of strontium hexaferrite and lead zirconate titanate or barium titanate and studies on magneto-electric (ME) coupling. Fibers with well-defined core–shell structures showed the order parameters in agreement with values for nanostructures. The strength of ME coupling measured by the magnetic field-induced polarization showed the fractional change in the remnant polarization as high as 21%. The ME voltage coefficient in H-assembled films showed the strong ME response for the zero magnetic bias field. Follow-up studies and potential avenues for enhancing the strength of ME coupling in the core–shell nanofibers are discussed.
The present study was designed to detect three single nucleotide polymorphisms (SNPs) located on 22q11 that was thought as being of particularly importance for genetic research into schizophrenia. We recruited a total of 176 Chinese family trios of Han descent, consisting of mothers, fathers and affected offspring with schizophrenia for the genetic analysis. The transmission disequilibrium test (TDT) showed that of three SNPs, rs10314 in the 3′-untranslated region of the CLDN5 locus was associated with schizophrenia (χ2 = 4.75, P = 0.029). The other two SNPs, rs1548359 present in the CDC45L locus centromeric of rs10314 and rs739371 in the 5′-flanking region of the CLDN5 locus, did not show such an association. The global chi-square (χ2) test showed that the 3-SNP haplotype system was not associated with schizophrenia although the 1-df test for individual haplotypes showed that the rs1548359(C)-rs10314(G)-rs739371(C) haplotype was excessively non-transmitted (χ2 = 5.32, P = 0.02). Because the claudin proteins are a major component for barrier-forming tight junctions that could play a crucial role in response to changing natural, physiological and pathological conditions, the CLDN5 association with schizophrenia may be an important clue leading to look into a meeting point of genetic and environmental factors.
Bipolar disorder (BD) is characterized by unusual shifts in mood and energy and affects 1 to 3% of the general population. Lithium (Li) can prevent patients from depression and mania, as well as reduce the risk of suicide. Unfortunately, a high rate of patients do not respond positively to Li treatment. In line with various studies, Li treatment is also associated with potentially severe adverse reactions, including renal dysfunctions. Specifically, it has been reported that Li may induce reduction of glomerular filtration rate (GFR) in long-term treated BD patients.
Aims
The aim of our study was to evaluate the contribution of genetic variants in Li-induced reduction of the estimated GFR (eGFR) in bipolar patients, under long term Li therapy.
Objectives
We screened the literature to identify genes previously shown to be associated with kidney function or Li mechanism of action and genotyped tag SNPs covering these genes.
Methods
The sample comprised 70 Sardinian bipolar patients genotyped for 46 SNPs, located in 33 genes, with Invader assay and Sanger sequencing.
Results
Our results showed that a SNP (rs378448) located in Acid Sensing Ion Channel Neurona-1 (ACCN1) gene, significantly interacted with years of Li treatment in reducing eGFR (F = 4.166, P = 0.046).
Conclusions
Our preliminary findings suggest that ACCN1 (ASIC2) gene could be involved in modulating the susceptibility of BD patients to develop renal dysfunctions induced by chronic Li treatment.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
The Square Kilometre Array (SKA) is a planned large radio interferometer designed to operate over a wide range of frequencies, and with an order of magnitude greater sensitivity and survey speed than any current radio telescope. The SKA will address many important topics in astronomy, ranging from planet formation to distant galaxies. However, in this work, we consider the perspective of the SKA as a facility for studying physics. We review four areas in which the SKA is expected to make major contributions to our understanding of fundamental physics: cosmic dawn and reionisation; gravity and gravitational radiation; cosmology and dark energy; and dark matter and astroparticle physics. These discussions demonstrate that the SKA will be a spectacular physics machine, which will provide many new breakthroughs and novel insights on matter, energy, and spacetime.
Tuberculosis (TB) is the leading cause of death among infectious diseases. China has a high burden of TB and accounted for almost 13% of the world's cases of multi-drug resistant (MDR) TB. Spinal TB is one reason for the resurgence of TB in China. Few large case studies of MDR spinal TB in China have been conducted. The aim of this research was to observe the epidemiological characteristics of inpatients with MDR spinal TB in six provinces and cities of China from 1999–2015. This is a multicentre retrospective observational study. Patients' information was collected from the control disease centre and infectious disease database of hospitals in six provinces and cities in China. A total of 3137 patients with spinal TB and 272 patients with MDR spinal TB were analysed. The result showed that MDR spinal TB remains a public health concern and commonly affects patients 15–30 years of age (34.19%). The most common lesions involved the thoracolumbar spine (35.66%). Local pain was the most common symptom (98.53%). Logistic analysis showed that for spinal TB patients, reside in rural district (OR 1.79), advanced in years (OR 1.92) and high education degree (OR 2.22) were independent risk factors for the development of MDR spinal TB. Women were associated with a lower risk of MDR spinal TB (OR 0.48). The most common first-line and second-line resistant drug was isoniazid (68.75%) and levofloxacin (29.04%), respectively. The use of molecular diagnosis resulted in noteworthy clinical advances, including earlier initiation of MDR spinal TB treatment, improved infection control and better clinical outcome. Chemotherapy and surgery can yield satisfactory outcomes with timely diagnosis and long-term treatment. These results enable a better understanding of the MDR spinal TB in China among the general public.
Space Infrared Telescope for Cosmology and Astrophysics (SPICA), the cryogenic infrared space telescope recently pre-selected for a ‘Phase A’ concept study as one of the three remaining candidates for European Space Agency (ESA's) fifth medium class (M5) mission, is foreseen to include a far-infrared polarimetric imager [SPICA-POL, now called B-fields with BOlometers and Polarizers (B-BOP)], which would offer a unique opportunity to resolve major issues in our understanding of the nearby, cold magnetised Universe. This paper presents an overview of the main science drivers for B-BOP, including high dynamic range polarimetric imaging of the cold interstellar medium (ISM) in both our Milky Way and nearby galaxies. Thanks to a cooled telescope, B-BOP will deliver wide-field 100–350 $\mu$m images of linearly polarised dust emission in Stokes Q and U with a resolution, signal-to-noise ratio, and both intensity and spatial dynamic ranges comparable to those achieved by Herschel images of the cold ISM in total intensity (Stokes I). The B-BOP 200 $\mu$m images will also have a factor $\sim $30 higher resolution than Planck polarisation data. This will make B-BOP a unique tool for characterising the statistical properties of the magnetised ISM and probing the role of magnetic fields in the formation and evolution of the interstellar web of dusty molecular filaments giving birth to most stars in our Galaxy. B-BOP will also be a powerful instrument for studying the magnetism of nearby galaxies and testing Galactic dynamo models, constraining the physics of dust grain alignment, informing the problem of the interaction of cosmic rays with molecular clouds, tracing magnetic fields in the inner layers of protoplanetary disks, and monitoring accretion bursts in embedded protostars.
The COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) project is a large international collaborative effort to analyze individual-level phenotype data from twins in multiple cohorts from different environments. The main objective is to study factors that modify genetic and environmental variation of height, body mass index (BMI, kg/m2) and size at birth, and additionally to address other research questions such as long-term consequences of birth size. The project started in 2013 and is open to all twin projects in the world having height and weight measures on twins with information on zygosity. Thus far, 54 twin projects from 24 countries have provided individual-level data. The CODATwins database includes 489,981 twin individuals (228,635 complete twin pairs). Since many twin cohorts have collected longitudinal data, there is a total of 1,049,785 height and weight observations. For many cohorts, we also have information on birth weight and length, own smoking behavior and own or parental education. We found that the heritability estimates of height and BMI systematically changed from infancy to old age. Remarkably, only minor differences in the heritability estimates were found across cultural–geographic regions, measurement time and birth cohort for height and BMI. In addition to genetic epidemiological studies, we looked at associations of height and BMI with education, birth weight and smoking status. Within-family analyses examined differences within same-sex and opposite-sex dizygotic twins in birth size and later development. The CODATwins project demonstrates the feasibility and value of international collaboration to address gene-by-exposure interactions that require large sample sizes and address the effects of different exposures across time, geographical regions and socioeconomic status.
Music or other background sounds are often played in barns as environmental enrichment for animals on farms or to mask sudden disruptive noises. Previous studies looking at the effects of this practice on non-human animal well-being and productivity have found contradictory results. However, there is still a lack of discussion on whether piglets have the ability to distinguish different types of music. In this study, we exposed piglets to different music conditions to investigate whether the piglets preferred certain music types, in which case those types would have the potential to be used as environmental enrichment. In total, 30 piglets were tested for music type preference to determine whether growing pigs respond differently to different types of music. We used music from two families of instruments (S: string, W: wind) and with two tempos (S: slow, 65 beats/min (bpm); F: fast, 200 bpm), providing four music-type combinations (SS: string-slow; SF: string-fast; WS: wind-slow; WF: wind-fast). The piglets were given a choice between two chambers, one with no music and the other with one of the four types of music, and their behaviour was observed. The results showed that SS and WF music significantly increased residence time (P<0.01) compared with the other music conditions. Compared with the control group (with no music), the different music conditions led to different behavioural responses, where SS music significantly increased lying (P<0.01) and exploration behaviour (P<0.01); SF music significantly increased tail-wagging behaviour (P<0.01); WS music significantly increased exploration (P<0.01); and WF music significantly increased walking, lying, standing and exploration (all P<0.01). The results also showed that musical instruments and tempo had little effect on most of the behaviours. Fast-tempo music significantly increased walking (P=0.02), standing (P<0.01) and tail wagging (P=0.04) compared with slow-tempo music. In conclusion, the results of this experiment show that piglets are more sensitive to tempo than to musical instruments in their response to musical stimulation and seem to prefer SS and WF music to the other two types. The results also suggest a need for further research on the effect of music types on animals.
A multichannel calorimeter system is designed and constructed which is capable of delivering single-shot and broad-band spectral measurement of terahertz (THz) radiation generated in intense laser–plasma interactions. The generation mechanism of backward THz radiation (BTR) is studied by using the multichannel calorimeter system in an intense picosecond laser–solid interaction experiment. The dependence of the BTR energy and spectrum on laser energy, target thickness and pre-plasma scale length is obtained. These results indicate that coherent transition radiation is responsible for the low-frequency component (${<}$1 THz) of BTR. It is also observed that a large-scale pre-plasma primarily enhances the high-frequency component (${>}$3 THz) of BTR.
Good canopy structure is essential for optimal maize (Zea mays L.) production. However, creating appropriate maize canopy structure can be difficult, because the characteristics of individual plants are altered by changes in plant age, density and interactions with neighbouring plants. The objective of the current study was to find a reliable method for building good maize canopy structure by analysing changes in canopy structure, light distribution and grain yield (GY). A modern maize cultivar (ZhengDan958) was planted at 12 densities ranging from 1.5 to 18 plants/m2 at two field locations in Xinjiang, China. At the silking stage (R1), plant and ear height increased with plant density as well as leaf area index (LAI), whereas leaf area per plant decreased logarithmically. The fraction of light intercepted by the plant (F) increased with increasing plant density, but the light extinction coefficient (K) decreased linearly from 0.61 to 0.39. Taking the optimum value of F (95%) as an example, and using measured values of K for each plant density at R1 and the equation from Beer's law, the corresponding (theoretical) LAI for each plant density was calculated and optimum plant density (9.72 plants/m2) obtained by calculating the difference between theoretical LAIs and actual observations. Further analysis showed that plant density ranging from 10.64 to 11.55 plants/m2 yielded a stable GY range. Therefore, taking into account the persistence time for maximum LAI, the plant density required to obtain an ideal GY maize canopy structure should be increased by 10–18% from 9.72 plants/m2.
Intranasal octenidine, an antiseptic alternative to mupirocin, can be used for methicillin-resistant Staphylococcus aureus (MRSA) decolonisation in the prevention of nosocomial transmission. A controlled before–after study was conducted in three extended-care hospitals in Singapore. All inpatients with >48 h stay were screened for MRSA colonisation in mid-2015(pre-intervention) and mid-2016(post-intervention). Hospital A: universal daily chlorhexidine bathing throughout 2015 and 2016, with intranasal octenidine for MRSA-colonisers in 2016. Hospital B: universal daily octenidine bathing and intranasal octenidine for MRSA-colonisers in 2016. Hospital C: no intervention. In 2015, MRSA prevalence was similar among the hospitals (Hospital A: 38.5%, Hospital B: 48.1%, Hospital C: 43.4%, P = 0.288). From 2015 to 2016, MRSA prevalence reduced by 58% in Hospital A (Adj OR 0.42, 95% CI 0.20–0.89) and 43% in Hospital B (Adj OR 0.57, 95% CI 0.39–0.84), but remained similar in Hospital C (Adj OR 1.19, 95% CI 0.60–2.33), after adjusting for age, gender, comorbidities, prior MRSA carriage, prior antibiotics exposure and length of hospital stay. Compared with the change in MRSA prevalence from 2015 to 2016 in Hospital C, MRSA prevalence declined substantially in Hospital A (Adj OR 0.35, 95% CI 0.13–0.97) and Hospital B (Adj OR 0.48, 95% CI 0.22–1.03). Topical intranasal octenidine, coupled with universal daily antiseptic bathing, can reduce MRSA colonisation in extended-care facilities.