We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The present volume features contributions from the 2022 BIRS-CMO workshop 'Moduli, Motives and Bundles – New Trends in Algebraic Geometry' held at the Casa Matemática Oaxaca (CMO), in partnership with the Banff International Research Station for Mathematical Innovation and Discovery (BIRS). The first part presents overview articles on enumerative geometry, moduli stacks of coherent sheaves, and torsors in complex geometry, inspired by related mini course lecture series of the workshop. The second part features invited contributions by experts on a diverse range of recent developments in algebraic geometry, and its interactions with number theory and mathematical physics, offering fresh insights into this active area. Students and young researchers will appreciate this text's accessible approach, as well as its focus on future research directions and open problems.
Cryphodera guangdongensis n. sp. was collected from the soil and roots of Schima superba in Guangdong province, China. The new species is characterised by having a nearly spherical female, with dimensions of length × width = 532.3 (423.8–675.3) × 295.6 (160.0–381.2) μm, stylet length of 35.7 (31.1–42.1) μm, protruding vulval lips, a vulval slit measuring 54.2 (47.4–58.9) μm, an area between the vulva and anus that is flat to concave, and a vulva–anus distance 49.3 (41.1–57.6) μm. The male features two lip annules, a stylet length of 31.7 (27.4–34.8) μm and basal knobs that are slightly projecting anteriorly, while lateral field is areolated with three incisures and spicules length of 27.1 (23.7–31.0) μm. The second stage juvenile is characterised by a body length of 506.1 (441.8–564.4) μm long, two to three lip annules, a stylet length 31.2 (29.7–33.2) μm which is well developed, basal knobs projecting anteriorly, a lateral field that is areolate with three incisures, and a narrow rounded tail measuring 63.2 (54.2–71.3) μm long, with a hyaline region of 35.6 (27.4–56.6) μm long that is longer than the stylet. Based on morphology and morphometrics, the new species is closely related to C. sinensis and C. japonicum within the genus Cryphodera. The phylogenetic trees constructed based on the ITS-rRNA, 28S-rRNA D2–D3 region, and the partial COI gene sequences indicate that the new species clusters with other Cryphodera species but maintains in a separated subgroup. A key to the species of the genus Cryphodera is also provided in this study.
The heterogeneity of chronic post-COVID neuropsychiatric symptoms (PCNPS), especially after infection by the Omicron strain, has not been adequately explored.
Aims
To explore the clustering pattern of chronic PCNPS in a cohort of patients having their first COVID infection during the ‘Omicron wave’ and discover phenotypes of patients based on their symptoms’ patterns using a pre-registered protocol.
Method
We assessed 1205 eligible subjects in Hong Kong using app-based questionnaires and cognitive tasks.
Results
Partial network analysis of chronic PCNPS in this cohort produced two major symptom clusters (cognitive complaint–fatigue and anxiety–depression) and a minor headache–dizziness cluster, like our pre-Omicron cohort. Participants with high numbers of symptoms could be further grouped into two distinct phenotypes: a cognitive complaint–fatigue predominant phenotype and another with symptoms across multiple clusters. Multiple logistic regression showed that both phenotypes were predicted by the level of pre-infection deprivation (adjusted P-values of 0.025 and 0.0054, respectively). The severity of acute COVID (adjusted P = 0.023) and the number of pre-existing medical conditions predicted only the cognitive complaint–fatigue predominant phenotype (adjusted P = 0.003), and past suicidal ideas predicted only the symptoms across multiple clusters phenotype (adjusted P < 0.001). Pre-infection vaccination status did not predict either phenotype.
Conclusions
Our findings suggest that we should pursue a phenotype-driven approach with holistic biopsychosocial perspectives in disentangling the heterogeneity under the umbrella of chronic PCNPS. Management of patients complaining of chronic PCNPS should be stratified according to their phenotypes. Clinicians should recognise that depression and anxiety cannot explain all chronic post-COVID cognitive symptoms.
A novel entomopathogenic nematode (EPN) species, Steinernema tarimense n. sp., was isolated from soil samples collected in a Populus euphratica forest located in Yuli County within the Tarim Basin of Xinjiang, China. Integrated morphological and molecular analyses consistently place S. tarimense n. sp. within the ‘kushidai-clade’. The infective juvenile (IJ) of new species is characterized by a body length of 674–1010 μm, excretory pore located 53–80 μm from anterior end, nerve ring positioned 85–131 μm from anterior end, pharynx base situated 111–162 μm from anterior end, a tail length of 41–56 μm, and the ratios D% = 42.0–66.6, E% = 116.2–184.4, and H% = 25.5–45.1. The first-generation male of the new species is characterized by a curved spicule length of 61–89 μm, gubernaculum length of 41–58 μm, and ratios D% = 36.8–66.2, SW% = 117.0–206.1, and GS% = 54.8–82.0. Additionally, the tail of first-generation female is conoid with a minute mucron. Phylogenetic analyses of ITS, 28S, and mt12S sequences demonstrated that the three isolates of S. tarimense n. sp. are conspecific and form a sister clade to members of the ‘kushidai-clade’ including S. akhursti, S. anantnagense, S. kushidai, and S. populi. Notably, the IJs of the new species exhibited faster development at 25°C compared to other Steinernema species. This represents the first described of an indigenous EPN species from Xinjiang, suggesting its potential as a novel biocontrol agent against local pests.
Food security constitutes a worldwide concern closely correlated with population growth. By 2050, the global population is expected to reach 9.3 billion(1). The rising population, along with increasing life expectancy and shifts toward Western dietary patterns, is expected to drive higher food demand and contribute to a rise in metabolic conditions(2). In this context, looking for alternative and sustainable food and protein sources is imperative. Pasture legumes including lucerne (Medicago sativa) and red clover (Trifolium pratense) are becoming popular as they can be used as an alternative protein and functional food source. Both crops play an important role in New Zealand’s agriculture. Their seeds can be used in human nutrition as alternative food and protein options; however, the presence of anti-nutritional factors (ANF) and their distinct taste make them less favourable for human consumption. Fermentation can be used as a possible strategy to mitigate these limitations. Lactobacillus fermentation was conducted using Lactocillus plantarum, Lactobacillus. acidophilus and Lactobacillus. casei. Proximate composition and mineral content were determined following Association of Official Analytical Chemists (AOAC) methods. Total phenol content (TPC), total flavonoid content (TFC) and antioxidant activity (2,2-Diphenyl-1-picrylhydrazyl and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid) and ANF including phytic acid, trypsin, and chymotrypsin inhibition were assessed using colourimetric techniques. For the enzyme inhibition assays, enzyme-substrate reactions were performed with sample extracts before measurement. All the experiments were replicated three times, and the results were expressed as mean ± SD. A factorial analysis of variance (ANOVA) was conducted (4 legume seed samples × 3 LAB cultures) with a Tukey’s post-hoc test for mean comparison at P < 0.05 using IBM SPSS Statistics 29.0. All the legume seeds demonstrated high nutritional content, with crude protein and fibre levels around 40 and 16% respectively. The seeds were also rich in minerals, particularly magnesium, phosphorus, iron and zinc. In addition, fermentation led to an increase (P < 0.05) in TPC, TFC and antioxidant activity, while significantly reducing ANF. For instance, fermentation led to an increase in TPC (18.8 to 47.1% increase), TFC (9.6 to 34.5% increase) and AOA via DPPH and ABTS. Lactobacillus fermentation has proven to be an effective processing technique to enhance the nutritional value of lucerne and red clover seeds. These findings support the potential of using fermentation to develop novel and sustainable protein sources, contributing to improved dietary quality and nutrition. Moreover, further work to study the effect of fermentation on the nutrient digestibility of lucerne and red clover seeds is warranted.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
This is a proof-of-concept study to compare the effects of a 2-week program of “Remind-to-move” (RTM) treatment using closed-loop and open-loop wearables for hemiparetic upper extremity in patients with chronic stroke in the community. The RTM open-loop wearable device has been proven in our previous studies to be useful to address the learned nonuse phenomenon of the hemiparetic upper extremity. A closed-loop RTM wearable device, which emits reminding cues according to actual arm use, was developed in this study. A convenience sample of 16 participants with chronic unilateral stroke recruited in the community was engaged in repetitive upper extremity task-specific practice for 2 weeks while wearing either a closed-loop or an open-loop ambulatory RTM wearable device on their affected hand for 3 hrs a day. Evaluations were conducted at pre-/post-intervention and follow-up after 4 weeks using upper extremity motor performance behavioral measures, actual arm use questionnaire, and the kinematic data obtained from the device. Results showed that both open-loop and closed-loop training groups achieved significant gains in all measures at posttest and follow-up evaluations. The closed-loop group showed a more significant improvement in movement frequency, hand functions, and actual arm use than did the open-loop group. Our findings supported the use of closed-loop wearables, which showed greater effects in terms of promoting the hand use of the hemiparetic upper extremity than open-loop wearables among patients with chronic stroke.
Background: Recent research has demonstrated that DBS sites in Alzheimer’s (AD) and Parkinson’s (PD) influencing cognition are functionally connected to the subiculum. However, the results are mixed, and it is unclear how or if DBS site-subiculum connectivity can be optimized to improve patient cognition. Methods: We studied how subiculum connectivity influenced cognitive outcomes in both PD (subthalamic nucleus) and AD (fornix) DBS patients (total n = 110). We first confirmed DBS site-subiculum connectivity had opposite cognitive effects in each disease. We next investigated patient factors underlying these opposing effects. Lastly, we related our findings back to clinical practice to guide DBS programming in PD and AD. Results: DBS site-subiculum connectivity correlated with cognitive improvement in AD but decline in PD. This was dependent upon hippocampal atrophy; such that higher subiculum connectivity was beneficial when the hippocampus was atrophic but deleterious when it was intact. Finally, we related our findings back to anatomy with cadaveric dissections and present how DBS stimulation can be optimized to improve patient cognition. Conclusions: DBS site-subiculum connectivity influences cognition but depends on patient factors. Thus, to optimize cognition based on patient factors, DBS electrodes can be programmed to stimulate subregions with higher or lower subiculum connectivity.
Background: Hyperosmotic hyperglycemic nonketotic state (HHS) is associated with myriad neurological complications such as seizures. Methods: We report a case presenting with visual hallucinations due to occipital lobe epilepsy. Results: A 67-year old woman with chronic hypertension, hyperlipidemia and diabetes mellitus non-compliant to medication presented with a 10-day history of recurrent visual phenomena in the left visual field. She described stationery multi-coloured flashing lights which decreased in intensity, brightness and size after 3 minutes. She was alert and conscious during attacks. There was no limb jerking. Neurological examination was normal with no visual field defect. Capillary glucose was 28.1 mmol/L, Hba1c 9% and B-hydroxybutyrate < 0.1. She was treated with actrapid 8 units, glipizide 5 mg BD and empagliflozin 12.5 mg OM. Interictal electroencephalogram was normal with no epileptiform activity. Brain magnetic resonance imaging revealed restricted diffusion in the right occipital cortex with corresponding cortical thickening and increased FLAIR signal with subtle hypodensity on GRE sequence. Her visual symptoms improved dramatically with hydration and diabetic control. She was treated with a short course of keppra. Conclusions: Visual hallucinations are an uncommon but well recognised and fully reversible complication of HHS. Clinicians should not forget HHS in the workup of occipital lobe epilepsy.
Background: Neck vessel imaging is often performed in hyperacute stroke to allow neurointerventionalists to estimate access complexity. This study aimed to assess clinician agreement on catheterization strategies based on imaging in these scenarios. Methods: An electronic portfolio of 60 patients with acute ischemic stroke was sent to 53 clinicians. Respondents were asked: (1) the difficulty of catheterization through femoral access with a regular Vertebral catheter, (2) whether to use a Simmons or reverse-curve catheter initially, and (3) whether to consider an alternative access site. Agreement was assessed using Fleiss’ Kappa statistics. Results: Twenty-two respondents (7 neurologists, 15 neuroradiologists) completed the survey. Overall there was slight interrater agreement (κ=0.17, 95% CI: 0.10–0.25). Clinicians with >50 cases annually had better agreement (κ=0.22) for all questions than those with fewer cases (κ=0.07). Agreement did not significantly differ by imaging modality: CTA (κ=0.18) and MRA (κ=0.14). In 40/59 cases (67.80%), at least 25% of clinicians disagreed on whether to use a Simmons or reverse-curve catheter initially. Conclusions: Agreement on catheterization strategies remains fair at best. Our results suggest that visual assessment of pre-procedural vessels imaging is not reliable for the estimation of endovascular access complexity.
Background: Amyotrophic Lateral Sclerosis (ALS) leads to progressive functional decline and reduced survival. Identifying clinical predictors like ALSFRS-R and FVC is essential for prognosis and disease management. Understanding progression profiles based on diagnostic characteristics supports clinical trial design and assessment of treatment response. This study evaluates disease progression and survival predictors in ALS patients from the CNDR. Methods: 1565 ALS patients in the CNDR were analyzed to assess baseline ALSFRS-R, FVC, time from symptom onset to diagnosis, and their association with disease progression and survival. Results: At diagnosis, ALSFRS-R was 44.7 (SD = 5.46), with 72.3% scoring ≥44. Mean FVC was 84.2% (SD = 23.3), with 78.3% of patients having FVC ≥65%. ALSFRS-R declined at 1.06 points/month (SD = 1.33), with faster progression in patients diagnosed within 24 months (1.61 points/month). Patients with ALSFRS-R ≥44 had a median survival of 41.8 months, compared to 30.9 months for those <44 (p < 0.001). Similarly, FVC ≥65% was associated with longer survival (35.4 vs. 29.5 months, p = 0.002). Conclusions: ALSFRS-R and FVC at diagnosis predict survival and inform clinical decision-making. These findings highlight the importance of early diagnosis and targeted interventions to slow disease progression and improve patient outcomes.
Multicenter clinical trials are essential for evaluating interventions but often face significant challenges in study design, site coordination, participant recruitment, and regulatory compliance. To address these issues, the National Institutes of Health’s National Center for Advancing Translational Sciences established the Trial Innovation Network (TIN). The TIN offers a scientific consultation process, providing access to clinical trial and disease experts who provide input and recommendations throughout the trial’s duration, at no cost to investigators. This approach aims to improve trial design, accelerate implementation, foster interdisciplinary teamwork, and spur innovations that enhance multicenter trial quality and efficiency. The TIN leverages resources of the Clinical and Translational Science Awards (CTSA) program, complementing local capabilities at the investigator’s institution. The Initial Consultation process focuses on the study’s scientific premise, design, site development, recruitment and retention strategies, funding feasibility, and other support areas. As of 6/1/2024, the TIN has provided 431 Initial Consultations to increase efficiency and accelerate trial implementation by delivering customized support and tailored recommendations. Across a range of clinical trials, the TIN has developed standardized, streamlined, and adaptable processes. We describe these processes, provide operational metrics, and include a set of lessons learned for consideration by other trial support and innovation networks.
Intensive longitudinal data (ILD) collected in mobile health (mHealth) studies contain rich information on the dynamics of multiple outcomes measured frequently over time. Motivated by an mHealth study in which participants self-report the intensity of many emotions multiple times per day, we describe a dynamic factor model that summarizes ILD as a low-dimensional, interpretable latent process. This model consists of (i) a measurement submodel—a factor model—that summarizes the multivariate longitudinal outcome as lower-dimensional latent variables and (ii) a structural submodel—an Ornstein–Uhlenbeck (OU) stochastic process—that captures the dynamics of the multivariate latent process in continuous time. We derive a closed-form likelihood for the marginal distribution of the outcome and the computationally-simpler sparse precision matrix for the OU process. We propose a block coordinate descent algorithm for estimation and use simulation studies to show that it has good statistical properties with ILD. Then, we use our method to analyze data from the mHealth study. We summarize the dynamics of 18 emotions using models with one, two, and three time-varying latent factors, which correspond to different behavioral science theories of emotions. We demonstrate how results can be interpreted to help improve behavioral science theories of momentary emotions, latent psychological states, and their dynamics.
With numerous applications of coilable masts in high-precision space application scenarios, there are also greater demands on the accuracy of their dynamic modelling and analysis. The modelling of hinges is a critical issue in the dynamic modelling of coilable masts, which significantly affects the accuracy of the dynamic response analysis. For coilable masts, the rotational effect is the most important problem in hinge modelling. However, few studies have focused on this topic. To address this problem, the concept of hinge equivalent rotational stiffness is proposed in this paper to describe the rotational effect of the coilable mast hinges. After that, a new coilable mast dynamic model containing the undetermined hinge equivalent rotational stiffness is introduced, and an identification method for the hinge equivalent rotational stiffness based on the hammer test is proposed. Finally, the dynamic modelling method is validated through an actual coilable mast example, and the analysis and test results show that the accuracy of the dynamic model established by the proposed method in this paper is greater than that of the traditional model.
This study explored mental workload recognition methods for carrier-based aircraft pilots utilising multiple sensor physiological signal fusion and portable devices. A simulation carrier-based aircraft flight experiment was designed, and subjective mental workload scores and electroencephalogram (EEG) and photoplethysmogram (PPG) signals from six pilot cadets were collected using NASA Task Load Index (NASA-TLX) and portable devices. The subjective scores of the pilots in three flight phases were used to label the data into three mental workload levels. Features from the physiological signals were extracted, and the interrelations between mental workload and physiological indicators were evaluated. Machine learning and deep learning algorithms were used to classify the pilots’ mental workload. The performances of the single-modal method and multimodal fusion methods were investigated. The results showed that the multimodal fusion methods outperformed the single-modal methods, achieving higher accuracy, precision, recall and F1 score. Among all the classifiers, the random forest classifier with feature-level fusion obtained the best results, with an accuracy of 97.69%, precision of 98.08%, recall of 96.98% and F1 score of 97.44%. The findings of this study demonstrate the effectiveness and feasibility of the proposed method, offering insights into mental workload management and the enhancement of flight safety for carrier-based aircraft pilots.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
Protein fermentation in the human gut is often associated with adverse health effects. Hence, understanding the fermentation characteristics of dietary undigested proteins is important for a comprehensive nutritional value of foods. This study investigated the protein fermentation kinetics of diet-derived proteins from thirty-one different foods using an in vitro model and human faecal inoculum. The undigested diet-derived protein substrate originated from porcine ileal digesta obtained from assessment of the digestible indispensable amino acid score (DIAAS) of the foods. Significant variations in fermentation kinetic parameters, particularly in maximum gas production rate (Rmax) and time to reach cumulative gas production (GP) from the substrate (TGPs), were observed. The Rmax ranged from 15·5 (se 0·7) ml/h for wheat bran-derived to 24·5 (se 0·9) ml/h for oatmeal-derived proteins. Egg-derived proteins had the shortest TGPs (14·7 (se 0·7) h), while mushroom-derived proteins had the longest (27·6 (se 7·1) h). When foods were categorised into five groups (‘animal protein’, ‘grains’, ‘legumes’, ‘fungi, algae and microorganisms’ and ‘others’), no significant differences were found in fermentation kinetics parameters. Samples were additionally incubated with porcine inoculum to assess potential donor-species effects. Human inoculum showed significantly lower Rmax, cumulative GP and microbiota turnover than porcine inoculum, indicating reduced fermentative activity. Linear regression analysis revealed correlations between human and porcine-derived inoculum only for Rmax (R2 = 0·78, P < 0·01) and TGPs (R² = 0·17, P < 0·05). These findings underscore the importance of using human inoculum in in vitro studies to better predict health implications of foods with DIAAS values.
Physical health checks in primary care for people with severe mental illness ((SMI) defined as schizophrenia, bipolar disorders and non-organic psychosis) aim to reduce health inequalities. Patients who decline or are deemed unsuitable for screening are removed from the denominator used to calculate incentivisation, termed exception reporting.
Aims
To describe the prevalence of, and patient characteristics associated with, exception reporting in patients with SMI.
Method
We identified adult patients with SMI from the UK Clinical Practice Research Datalink (CPRD), registered with a general practice between 2004 and 2018. We calculated the annual prevalence of exception reporting and investigated patient characteristics associated with exception reporting, using logistic regression.
Results
Of 193 850 patients with SMI, 27.7% were exception reported from physical health checks at least once. Exception reporting owing to non-response or declining screening increased over the study period. Patients of Asian or Black ethnicity (Asian: odds ratio 0.72, 95% CI 0.65–0.80; Black: odds ratio 0.86, 95% CI 0.76–0.97; compared with White) and women (odds ratio 0.90, 95% CI 0.88–0.92) had a reduced odds of being exception reported, whereas patients diagnosed with ‘other psychoses’ (odds ratio 1.19, 95% CI 1.15–1.23; compared with bipolar disorder) had increased odds. Younger patients and those diagnosed with schizophrenia were more likely to be exception reported owing to informed dissent.
Conclusions
Exception reporting was common in people with SMI. Interventions are required to improve accessibility and uptake of physical health checks to improve physical health in people with SMI.
Posttraumatic stress disorder (PTSD) has been associated with advanced epigenetic age cross-sectionally, but the association between these variables over time is unclear. This study conducted meta-analyses to test whether new-onset PTSD diagnosis and changes in PTSD symptom severity over time were associated with changes in two metrics of epigenetic aging over two time points.
Methods
We conducted meta-analyses of the association between change in PTSD diagnosis and symptom severity and change in epigenetic age acceleration/deceleration (age-adjusted DNA methylation age residuals as per the Horvath and GrimAge metrics) using data from 7 military and civilian cohorts participating in the Psychiatric Genomics Consortium PTSD Epigenetics Workgroup (total N = 1,367).
Results
Meta-analysis revealed that the interaction between Time 1 (T1) Horvath age residuals and new-onset PTSD over time was significantly associated with Horvath age residuals at T2 (meta β = 0.16, meta p = 0.02, p-adj = 0.03). The interaction between T1 Horvath age residuals and changes in PTSD symptom severity over time was significantly related to Horvath age residuals at T2 (meta β = 0.24, meta p = 0.05). No associations were observed for GrimAge residuals.
Conclusions
Results indicated that individuals who developed new-onset PTSD or showed increased PTSD symptom severity over time evidenced greater epigenetic age acceleration at follow-up than would be expected based on baseline age acceleration. This suggests that PTSD may accelerate biological aging over time and highlights the need for intervention studies to determine if PTSD treatment has a beneficial effect on the aging methylome.