We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cavitation bubble pulsation and liquid jet loads are the main causes of hydraulic machinery erosion. Methods to weaken the load influences have always been hot topics of related research. In this work, a method of attaching a viscous layer to a rigid wall is investigated in order to reduce cavitation pulsations and liquid jet loads, using both numerical simulations and experiments. A multiphase flow model incorporating viscous effects has been developed using the Eulerian finite element method (EFEM), and experimental methods of a laser-induced bubble near the viscous layer attached on a rigid wall have been carefully designed. The effects of the initial bubble–wall distance, the thickness of the viscous layer, and the viscosity on bubble pulsation, migration and wall pressure load are investigated. The results show that the bubble migration distance, the normalised thickness of the oil layer and the wall load generally decrease with the initial bubble–wall distance or the oil-layer parameters. Quantitative analysis reveals that when the initial bubble–wall distance remains unchanged, there exists a demarcation line for the comparison of the bubble period and the reference period (the bubble period without viscous layer under the same initial bubble–wall distance), and a logarithmic relationship is observed that $\delta \propto \log_{10} \mu ^*$, where $\delta =h/R_{max}$ is the thickness of the viscous layer h normalised by the maximum bubble radius $R_{max}$, $\mu ^* = \mu /({R_{max }}\sqrt {{\rho }{{\mathop {P}\nolimits } _{{atm}}}})$ is the dynamic viscosity $\mu$ normalised by water density $ \rho $ and atmospheric pressure $P_{atm}$. The results of this paper can provide technical support for related studies of hydraulic cavitation erosion.
Broadband frequency-tripling pulses with high energy are attractive for scientific research, such as inertial confinement fusion, but are difficult to scale up. Third-harmonic generation via nonlinear frequency conversion, however, remains a trade-off between bandwidth and conversion efficiency. Based on gradient deuterium deuterated potassium dihydrogen phosphate (KDxH2-xPO4, DKDP) crystal, here we report the generation of frequency-tripling pulses by rapid adiabatic passage with a low-coherence laser driver facility. The efficiency dependence on the phase-matching angle in a Type-II configuration is studied. We attained an output at 352 nm with a bandwidth of 4.4 THz and an efficiency of 36%. These results, to the best of our knowledge, represent the first experimental demonstration of gradient deuterium DKDP crystal in obtaining frequency-tripling pulses. Our research paves a new way for developing high-efficiency, large-bandwidth frequency-tripling technology.
The asymmetric instability in two streamwise orthogonal planes for three-dimensional flow-induced vibration (FIV) of an elastically mounted cube at a moderate Reynolds number of 300 is numerically investigated in this paper. The full-order computational fluid dynamics method, data-driven stability analysis via the eigensystem realization algorithm and the selective frequency damping method and total dynamic mode decomposition (TDMD) are applied here to explore this problem. Due to the unsteady non-axisymmetric wakefield formed for flow passing a stationary cube, the FIV response was found to exhibit separate structural stability and oscillations (including lock-in and galloping behaviour) in the two different streamwise orthogonal planes while the body is released. The initial kinetic energy accompanying the release of the cube could destabilize the above-mentioned structural stability. The observed FIV asymmetric instability is verified by the root trajectory of the structural mode obtained via data-driven stability analysis. The stability of the structural modes dominates regardless of whether the structural response oscillates significantly in various (reduced) velocity ranges. Further TDMD analysis on the wake structure, accompanied by the time–frequency spectrum of time-history structural displacements, suggested that the present FIV unit with galloping behaviour is dominated by the combination of the shifted base-flow mode, structure modes and several harmonics of the wake mode.
A wide range of environmental, energy, medical and biological processes rely on dispersive transport through complex media. Yet, because of the stagnant and opaque nature of the microscopic system, the role of disordered flow and structure in the dispersive transport of solutes remains poorly understood. Here, we use a circular porous microfluidic system to investigate the radial dispersion in porous media driven by non-Newtonian fluids with strong advection rate (or at high Péclet number) and low-to-moderate Reynolds numbers. We observe for the first time the presence of diffusion ‘blind zones’ in the microstructure for high solution injection velocities. More specifically, an in-depth analysis uncovers that the circumferential flow frame, coformed by obstacles and vortices especially the ‘twin-vortex’ with same rotation direction, is responsible for the diffusion ‘blind zones’ and transport heterogeneity. The vortices are induced by the coupling of microfluidics and porous structures, and correlated to inertial flow-induced instabilities. The trade-off between diffusion efficiency and quality/completeness with respect to the high Péclet number (or high inlet velocity) serves to enhance our comprehension of intricate fluid dynamics and affords a set of principles to aid a diverse range of practical implementations.
This observation purposed to investigate the effect of the Yangxin Huoxue Jiedu formula on children with viral myocarditis and its effect on inflammatory factors and oxidative response.
Materials and methods:
A total of 121 children with viral myocarditis were randomly divided into two groups, namely the control group (N = 60) and the traditional Chinese medicine group (N = 61). The control group was mainly treated with routine therapy, while the traditional Chinese medicine group was treated with Yangxin Huoxue Jiedu recipes based on the control group. The creatine kinase, creatine kinase myocardial isoenzyme, aspartate aminotransferase, lactic dehydrogenase, hydroxybutyrate dehydrogenase, cardiac troponin I, brain natriuretic peptide, interleukin-6, interleukin-8, and tumour necrosis factor-alpha, superoxide dismutase and malondialdehyde in viral myocarditis patients were tested to estimate the myocardial function, inflammation, and oxidative situation.
Results:
After Yangxin Huoxue Jiedu treatment, 15 cases were recovered, 20 were excellent, and 21 were effective, which had a significant difference from the control group. The concentration of creatine kinase, creatine kinase myocardial isoenzyme, aspartate aminotransferase, lactic dehydrogenase, hydroxybutyrate dehydrogenase, cardiac troponin I and brain natriuretic peptide was decreased in the traditional Chinese medicine group. The levels of interleukin-6, interleukin-8, and tumour necrosis factor-alpha in the traditional Chinese medicine group were significantly lower than those in the control group. Superoxide dismutase was higher and malondialdehyde was lower than those in the control group.
Conclusion:
The use of Yangxin Huoxue Jiedu in the treatment of viral myocarditis has a definite clinical effect, which could improve myocardial function, reduce body inflammation, and promote oxidative recovery.
Todorokite is a common Mn oxide (with a tunnel structure) in the Earth surface environment, and can be obtained by hydrothermal treatment or refluxing process from precursor buserite with a layered structure. Several chemical reaction conditions for the phase transformation from Na-buserite to todorokite at atmospheric pressure were investigated, including temperature, pH, crystallinity of precursor Na-buserite, the amount of the interlayer Mg2+ of the Mg-buserite and clay minerals. The results showed that the conversion rate and crystallinity of todorokite decreased with falling temperature, and Mg-buserite could not be completely transformed to todorokite at lower temperatures (40°C). The poorly crystalline Na-buserite could be converted into todorokite more easily than highly crystalline Na-buserite. Todorokite can be prepared at pH 5–9, but the rate of conversion and crystallinity of todorokite did vary with pH in the order: neutral ≈ alkali > acidic. The conversion rate of todorokite decreased with decreasing interlayer Mg2+ content of the Mg-buserite. The presence of montmorillonite or goethite slowed the formation reaction of todorokite in the refluxing process, and the reaction time was prolonged when the amounts of those minerals were increased.
Schizophrenia is a complex and heterogeneous syndrome with high clinical and biological stratification. Identifying distinctive subtypes can improve diagnostic accuracy and help precise therapy. A key challenge for schizophrenia subtyping is understanding the subtype-specific biological underpinnings of clinical heterogeneity. This study aimed to investigate if the machine learning (ML)-based neuroanatomical and symptomatic subtypes of schizophrenia are associated.
Methods
A total of 314 schizophrenia patients and 257 healthy controls from four sites were recruited. Gray matter volume (GMV) and Positive and Negative Syndrome Scale (PANSS) scores were employed to recognize schizophrenia neuroanatomical and symptomatic subtypes using K-means and hierarchical methods, respectively.
Results
Patients with ML-based neuroanatomical subtype-1 had focally increased GMV, and subtype-2 had widespread reduced GMV than the healthy controls based on either K-means or Hierarchical methods. In contrast, patients with symptomatic subtype-1 had severe PANSS scores than subtype-2. No differences in PANSS scores were shown between the two neuroanatomical subtypes; similarly, no GMV differences were found between the two symptomatic subtypes. Cohen’s Kappa test further demonstrated an apparent dissociation between the ML-based neuroanatomical and symptomatic subtypes (P > 0.05). The dissociation patterns were validated in four independent sites with diverse disease progressions (chronic vs. first episodes) and ancestors (Chinese vs. Western).
Conclusions
These findings revealed a replicable dissociation between ML-based neuroanatomical and symptomatic subtypes of schizophrenia, which provides a new viewpoint toward understanding the heterogeneity of schizophrenia.
The critical effect of the windward interior angles of elastically mounted trapezoidal bodies on a galloping instability is numerically investigated in this paper using two methodologies of high-fidelity computational fluid dynamics simulations and data-driven stability analysis using the eigensystem realization algorithm. A micro exploration of the dynamical response is processed to understand the mechanism underpinning the structural amplification at the initial stage of the galloping instability and the competition between wake and structural modes. It is observed that very small changes in the windward interior angle of an isosceles-trapezoidal body can provoke or suppress galloping – indeed, a small decrease or increase (low to $1^\circ$) of the windward interior angle from a right angle ($90^\circ$) can result in a significant enhancement and complete suppression, respectively, of the galloping oscillations. This supports our hypothesis that the contraction and/or expansion (viz., fore-aft tapering and/or widening) of the cross-section in the streamline direction has potential influences on galloping triggering from the geometrical perspective. The data-driven stability analysis is also applied to verify and analyse this phenomenon from the perspective of modal analysis. The experimental measurements are also conducted in the wind tunnel to support this hypothesis.
Late Palaeozoic igneous rock associations in response to subduction, accretion, and final closure of the eastern Palaeo-Asian Ocean play a significant role in understanding the geodynamic evolution of the southeastern Central Asian Orogenic Belt. Previous studies have identified a Permian arc magmatic belt associated with the southward-dipping subduction of the eastern Palaeo-Asian Ocean along the Solonker–Changchun suture zone. The genetic mechanism and associated geodynamic settings are of great importance in deciphering the evolution of the eastern Palaeo-Asian Ocean. This paper presents zircon U–Pb–Hf isotope and whole-rock geochemical analyses for a suite of magmatic rocks including the early Permian diorite porphyrites (ca. 281.0 Ma), andesites (ca. 276 Ma) and rhyolites (ca. 275 Ma) in the Kulun region. The diorite porphyrites and andesites have high SiO2 and total alkali contents, and low MgO contents and Mg no. values, with enrichments in large ion lithophile elements and depletions in high-field-strength elements. These geochemical characteristics, together with low-Sr and high-Yb contents, a weak concave-upward shape of middle rare earth elements and negative Eu anomalies, suggest that these intermediate igneous rocks were generated by partial melting of amphibolitic lower crust at a crustal depth of 30–40 km. The rhyolites have heterogeneous isotopic compositions, with ϵHf(t) values and TDM2 ages of –20.8 to +0.5 and 3578∼1494 Ma, implying that they were likely derived from partial melting of a mixed source dominated by recycled ancient crust with minor juvenile crustal materials. The rhyolites show potassic affinity with relatively high K2O and very low Na2O, which was attributed to liquid immiscibility of felsic magma and subsequent limited fractional crystallization of plagioclase. The regional igneous associations, metamorphic events, and coeval sedimentary rocks along the Solonker–Changchun suture zone indicate that the early Permian igneous rocks were formed in an active continental arc environment in response to southward subduction of the eastern Palaeo-Asian Ocean.
Low molecular weight glutenin subunits (LWM-GSs) play a crucial role in determining wheat flour processing quality. In this work, 35 novel LMW-GS genes (32 active and three pseudogenes) from three Aegilops umbellulata (2n = 2x = 14, UU) accessions were amplified by allelic-specific PCR. We found that all LMW-GS genes had the same primary structure shared by other known LMW-GSs. Thirty-two active genes encode 31 typical LMW-m-type subunits. The MZ424050 possessed nine cysteine residues with an extra cysteine residue located in the last amino acid residue of the conserved C-terminal III, which could benefit the formation of larger glutenin polymers, and therefore may have positive effects on dough properties. We have found extensive variations which were mainly resulted from single-nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) among the LMW-GS genes in Ae. umbellulata. Our results demonstrated that Ae. umbellulata is an important source of LMW-GS variants and the potential value of the novel LMW-GS alleles for wheat quality improvement.
Self-organizing systems (SOS) are developed to perform complex tasks in unforeseen situations with adaptability. Predefining rules for self-organizing agents can be challenging, especially in tasks with high complexity and changing environments. Our previous work has introduced a multiagent reinforcement learning (RL) model as a design approach to solving the rule generation problem of SOS. A deep multiagent RL algorithm was devised to train agents to acquire the task and self-organizing knowledge. However, the simulation was based on one specific task environment. Sensitivity of SOS to reward functions and systematic evaluation of SOS designed with multiagent RL remain an issue. In this paper, we introduced a rotation reward function to regulate agent behaviors during training and tested different weights of such reward on SOS performance in two case studies: box-pushing and T-shape assembly. Additionally, we proposed three metrics to evaluate the SOS: learning stability, quality of learned knowledge, and scalability. Results show that depending on the type of tasks; designers may choose appropriate weights of rotation reward to obtain the full potential of agents’ learning capability. Good learning stability and quality of knowledge can be achieved with an optimal range of team sizes. Scaling up to larger team sizes has better performance than scaling downwards.
The origins of metal coinage and the monetisation of ancient economies have long been a research focus in both archaeology and economic history. Recent excavations of an Eastern Zhou period (c. 770–220 BC) bronze foundry at Guanzhuang in Henan Province, China, have yielded clay moulds for casting spade coins. The technical characteristics of the moulds demonstrate that the site functioned as a mint for producing standardised coins. Systematic AMS radiocarbon-dating indicates that well-organised minting developed c. 640–550 BC, making Guanzhuang the world's oldest-known, securely dated minting site. This discovery provides important new data for exploring the origin of monetisation in ancient China.
Late Mesozoic igneous rocks are important for deciphering the Mesozoic tectonic setting of NE China. In this paper, we present whole-rock geochemical data, zircon U–Pb ages and Lu–Hf isotope data for Early Cretaceous volcanic rocks from the Tulihe area of the northern Great Xing’an Range (GXR), with the aim of evaluating the petrogenesis and genetic relationships of these rocks, inferring crust–mantle interactions and better constraining extension-related geodynamic processes in the GXR. Zircon U–Pb ages indicate that the rhyolites and trachytic volcanic rocks formed during late Early Cretaceous time (c. 130–126 Ma). Geochemically, the highly fractionated I-type rhyolites exhibit high-K calc-alkaline, metaluminous to weakly peraluminous characteristics. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) but depleted in high-field-strength elements (HFSEs), with their magmatic zircons ϵHf(t) values ranging from +4.1 to +9.0. These features suggest that the rhyolites were derived from the partial melting of a dominantly juvenile, K-rich basaltic lower crust. The trachytic volcanic rocks are high-K calc-alkaline series and exhibit metaluminous characteristics. They have a wide range of zircon ϵHf(t) values (−17.8 to +12.9), indicating that these trachytic volcanic rocks originated from a dominantly lithospheric-mantle source with the involvement of asthenospheric mantle materials, and subsequently underwent extensive assimilation and fractional crystallization processes. Combining our results and the spatiotemporal migration of the late Early Cretaceous magmatic events, we propose that intense Early Cretaceous crust–mantle interaction took place within the northern GXR, and possibly the whole of NE China, and that it was related to the upwelling of asthenospheric mantle induced by rollback of the Palaeo-Pacific flat-subducting slab.
We report an experimental study of the Prandtl-number effects in quasi-two-dimensional (quasi-2-D) Rayleigh–Bénard convection. The experiments were conducted in four rectangular convection cells over the Prandtl-number range of $11.7 \leqslant Pr \leqslant 650.7$ and over the Rayleigh-number range of $6.0\times 10^8 \leqslant Ra \leqslant 3.0\times 10^{10}$. Flow visualization reveals that, as $Pr$ increases from 11.7 to 145.7, thermal plumes pass through the central region much less frequently and their self-organized large-scale motion is more confined along the periphery of the convection cell. The large-scale flow is found to break down for higher $Pr$, resulting in a regime transition in the Reynolds number $Re$. For the $Pr$ range with a large-scale flow of system size, the $Re$ number, Nusselt number $Nu$ and local temperature fluctuations were investigated systematically. It is found that $Re$ scales as $Re \sim Ra^{0.58}Pr^{-0.82}$ in the present geometry, which suggests that it is in line with the behaviour in the 2-D configuration. On the other hand, the measured $Nu(Ra, Pr)$ relation $Nu \sim Ra^{0.289}Pr^{-0.02}$ tends to be compatible with the finding in a three-dimensional (3-D) system. For the temperature fluctuations in the cell centre and near the sidewall, they exhibit distinct $Ra$-dependent scalings that could not be accounted for with existing theories, but their $Pr$ dependences for $Pr \lesssim 50$ are in agreement with the predictions by Grossmann & Lohse (Phys. Fluids, vol. 16, 2004, pp. 4462–4472). These results enrich our understanding of quasi-2-D thermal convection, and its similarities and differences compared to 2-D and 3-D systems.
Hypertension represents one of the most common pre-existing conditions and comorbidities in Coronavirus disease 2019 (COVID-19) patients. To explore whether hypertension serves as a risk factor for disease severity, a multi-centre, retrospective study was conducted in COVID-19 patients. A total of 498 consecutively hospitalised patients with lab-confirmed COVID-19 in China were enrolled in this cohort. Using logistic regression, we assessed the association between hypertension and the likelihood of severe illness with adjustment for confounders. We observed that more than 16% of the enrolled patients exhibited pre-existing hypertension on admission. More severe COVID-19 cases occurred in individuals with hypertension than those without hypertension (21% vs. 10%, P = 0.007). Hypertension associated with the increased risk of severe illness, which was not modified by other demographic factors, such as age, sex, hospital geological location and blood pressure levels on admission. More attention and treatment should be offered to patients with underlying hypertension, who usually are older, have more comorbidities and more susceptible to cardiac complications.
To explore whether different polyvinylpyrrolidone (PVP) concentrations affect the results of intracytoplasmic sperm injection (ICSI), a prospective study was conducted for 194 couples undergoing 210 ICSI therapy cycles. These cycles were divided into three groups (10, 7 and 5% groups) using the corresponding concentration of PVP for sperm immobilization. The main outcome measures were analyzed. Results indicated that, with a decrease in PVP concentrations, all of the main outcome measures increased. In particular, the high-quality cleavage embryo rate in the 7% group was significantly lower than in the 5% group (P < 0.01), and the cleavage, high-quality cleavage embryo, and high-quality blastocyst rates in the 5% group were significantly higher than those in the 10% group (all P < 0.001). For high-/intermediate-quality semen, all of the main outcome measures were significantly increased with 5% PVP. For the poor-quality semen, only the high-quality cleavage embryo and high-quality blastocyst rates were significantly higher in the 5% group. Therefore, lowering PVP concentrations greatly promoted the development of embryos in ICSI cycles, with an optimal concentration of 5% for ICSI.
A nanoparticle-based drug delivery system is first established by mesoporous silica encapsulating amino acid–intercalated layered double hydroxide (LDH) to construct nanocomposites AA-LDH@MS. The amino acids including phenylalanine (Phe) and histidine (His) with aromatic groups are intercalated into LDH as the cores Phe-LDH and His-LDH. These nanocomposites AA-LDH@MS display multispaces of the interlayer spaces of LDH and porous channels of mesoporous silica to load drugs. Moreover, amino acid molecules provide the interaction sites to improve effectively loading amounts of drugs. 5-Fluorouracil (5-FU) is used as the cargo molecules to observe the delivery in vitro. The results indicate that the maximum loading amounts of drugs are up to 392 mg/g at 60 °C for 12 h in the nanocomposite Phe-LDH@MS. All the nanocomposites exhibit the sustained release of 5-FU at pH 4 and pH 7.4. The Korsmeyer–Peppas model is used to fit the kinetic plot of the drug release in vitro, which concludes that 5-FU release from AA-LDH@MS belongs to Fickian diffusion.
While maternal folate deficiency has been linked to poor pregnancy outcomes such as neural tube defects, anaemia and low birth weight, the relationship between folate and preterm birth (PTB) in the context of the US post-folic acid fortification era is inconclusive. We sought to explore the relationship between maternal folate status and PTB and its subtypes, i.e. spontaneous and medically indicated PTB.
Design
Observational study.
Setting
Boston Birth Cohort, a predominantly urban, low-income, race/ethnic minority population at a high risk for PTB.
Participants
Mother–infant dyads (n 7675) enrolled in the Boston Birth Cohort. A sub-sample (n 2313) of these dyads had maternal plasma folate samples collected 24–72 h after delivery.
Results
Unadjusted and adjusted logistic regressions revealed an inverse relationship between the frequency of multivitamin supplement intake and PTB. Compared with less frequent use, multivitamin supplement intake 3–5 times/week (adjusted OR (aOR) = 0·78; 95 % CI 0·64, 0·96) or >5 times/week (aOR = 0·77; 95 % CI 0·64, 0·93) throughout pregnancy was associated with reduced risk of PTB. Consistently, higher plasma folate levels (highest v. lowest quartile) were associated with lower risk of PTB (aOR = 0·74; 95 % CI 0·56, 0·97). The above associations were similar among spontaneous and medically indicated PTB.
Conclusions
If confirmed by future studies, our findings raise the possibility that optimizing maternal folate levels across pregnancy may help to reduce the risk of PTB among the most vulnerable US population in the post-folic acid fortification era.
To investigate the impact of viral and bacterial co-infection in hospitalised children with Mycoplasma pneumoniae pneumonia (RMPP). Retrospective analysis of 396 children with RMPP in our hospital admitted between 1 January 2011 and 31 December 2016 was performed. Nasal aspirate samples were collected for pathogen detection and clinical data were collected. We analysed clinical characteristics, lung imaging characteristics and pathogenic species among these children. Of the 396 RMPP cases, 107 (27.02%) had co-infection with other pathogen, with Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus being the most common bacteria of infection and human bocavirus (HBoV), human rhinovirus, respiratory syncytial virus being the most common viruses of infection. Children with co-infection were younger than that with single infection (P = 0.010). Children with both virus and bacteria co-infection had been the youngest (P = 0.040). Children with co-infection had a longer fever process, higher leukocyte count, higher C-reactive protein compared with single infection (P < 0.05). Children with co-infection had a higher percentage of pnemothorax and diffuse large area of inflammation in chest X-ray manifestation compared with children with single infection (P < 0.05). S. pneumonia and HBoV was the leading cause of co-infection in RMPP. Co-infections led to more disease severity in children with RMPP compared with single infections.
Paradoxical arguments and mixed empirical evidence coexist in the current literature concerning the relationship between team familiarity and team innovation. To resolve this contradiction, we apply habitual routines theory to propose that team familiarity and team innovation have an inverted U-shaped relationship. Using a data set of 68,933 R&D teams in the electrical engineering industry, our results support a nonlinear relationship between team familiarity and team innovation, and suggest that the best innovative performance is produced by moderately familiar teams. Furthermore, we find that external learning can moderate this curvilinear relationship. Theoretical contributions and future implications are discussed.