We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Tuberculosis (TB) remains a significant public health concern in China. Using data from the Global Burden of Disease (GBD) study 2021, we analyzed trends in age-standardized incidence rate (ASIR), prevalence rate (ASPR), mortality rate (ASMR), and disability-adjusted life years (DALYs) for TB from 1990 to 2021. Over this period, HIV-negative TB showed a marked decline in ASIR (AAPC = −2.34%, 95% CI: −2.39, −2.28) and ASMR (AAPC = −0.56%, 95% CI: −0.62, −0.59). Specifically, drug-susceptible TB (DS-TB) showed reductions in both ASIR and ASMR, while multidrug-resistant TB (MDR-TB) showed slight decreases. Conversely, extensively drug-resistant TB (XDR-TB) exhibited upward trends in both ASIR and ASMR. TB co-infected with HIV (HIV-DS-TB, HIV-MDR-TB, HIV-XDR-TB) showed increasing trends in recent years. The analysis also found an inverse correlation between ASIRs and ASMRs for HIV-negative TB and the Socio-Demographic Index (SDI). Projections from 2022 to 2035 suggest continued increases in ASIR and ASMR for XDR-TB, HIV-DS-TB, HIV-MDR-TB, and HIV-XDR-TB. The rising burden of XDR-TB and HIV-TB co-infections presents ongoing challenges for TB control in China. Targeted prevention and control strategies are urgently needed to mitigate this burden and further reduce TB-related morbidity and mortality.
This paper introduces a novel ray-tracing methodology for various gradient-index materials, particularly plasmas. The proposed approach utilizes adaptive-step Runge–Kutta integration to compute ray trajectories while incorporating an innovative rasterization step for ray energy deposition. By removing the requirement for rays to terminate at cell interfaces – a limitation inherent in earlier cell-confined approaches – the numerical formulation of ray motion becomes independent of specific domain geometries. This facilitates a unified and concise tracing method compatible with all commonly used curvilinear coordinate systems in laser–plasma simulations, which were previously unsupported or prohibitively complex under cell-confined frameworks. Numerical experiments demonstrate the algorithm’s stability and versatility in capturing diverse ray physics across reduced-dimensional planar, cylindrical and spherical coordinate systems. We anticipate that the rasterization-based approach will pave the way for the development of a generalized ray-tracing toolkit applicable to a broad range of fluid simulations and synthetic optical diagnostics.
While both simultaneous and sequential contests are mechanisms used in practice such as crowdsourcing, job interviews and sports contests, few studies have directly compared their performance. By modeling contests as incomplete information all-pay auctions with linear costs, we analytically and experimentally show that the expected maximum effort is higher in simultaneous contests, in which contestants choose their effort levels independently and simultaneously, than in sequential contests, in which late entrants make their effort choices after observing all prior participants’ choices. Our experimental results also show that efficiency is higher in simultaneous contests than in sequential ones. Sequential contests’ efficiency drops significantly as the number of contestants increases. We also discover that when participants’ ability follows a power distribution, high ability players facing multiple opponents in simultaneous contests tend to under-exert effort, compared to theoretical predictions. We explain this observation using a simple model of overconfidence.
This study aimed to investigate the intake of dairy products during pregnancy in women with gestational diabetes mellitus (GDM) and its impacts on neonatal birth weight and pregnancy outcomes. A total of 386 women with GDM during the second trimester pregnancy participated in this prospective cohort study. We evaluated dairy products intake through the FFQ. Pregnancy outcomes were obtained from the delivery data. Participants were divided into insufficient and sufficient intake of milk and dairy products groups (< 300 g/d and ≥ 300 g/d, respectively). The average intake of dairy products during the second trimester pregnancy in women with GDM was 317·8 ± 179·5 g/d, and the total energy intake was 1635·4 ± 708·7 kcal/d. However, 76·68 % of them did not meet the recommended total energy intake of women with GDM. After adjusting for confounding factors, women with GDM who consumed ≥ 300 g/d of dairy products had an average reduction in birth weight of 93·1 g compared with women who consumed < 300 g/d of dairy products (95 % CI −171·343, −14·927). Women with GDM in sufficient intake group was also associated with lower risk of macrosomia (95 % CI 0·043, 0·695) and caesarean section (95 % CI 0·387, 0·933) and not related to low birth weight infant (95 % CI 0·617, 14·502) and preterm birth (95 % CI 0·186, 1·510) when compared with participants in insufficient intake group. Under the premise of insufficient total energy intake, the intake of dairy products during the second trimester pregnancy in women with GDM might be related to the decrease of neonatal birth weight.
A multifunctional optical diagnostic system, which includes an interferometer, a refractometer and a multi-frame shadowgraph, has been developed at the Shenguang-II upgrade laser facility to characterize underdense plasmas in experiments of the double-cone ignition scheme of inertial confinement fusion. The system employs a 266 nm laser as the probe to minimize the refraction effect and allows for flexible switching among three modes of the interferometer, refractometer and multi-frame shadowgraph. The multifunctional module comprises a pair of beam splitters that attenuate the laser, shield stray light and configure the multi-frame and interferometric modules. By adjusting the distance and angle between the beam splitters, the system can be easily adjusted and switched between the modes. Diagnostic results demonstrate that the interferometer can reconstruct electron density below 1019 cm–3, while the refractometer can diagnose density approximately up to 1020 cm–3. The multi-frame shadowgraph is used to qualitatively characterize the temporal evolution of plasmas in the cases in which the interferometer and refractometer become ineffective.
The self-generated magnetic field in three-dimensional (3-D) single-mode ablative Rayleigh–Taylor instability (ARTI) relevant to the acceleration phase of a direct-drive inertial confinement fusion (ICF) implosion is investigated. It is found that stronger magnetic fields up to a few thousand teslas can be generated by 3-D ARTI rather than by its two-dimensional (2-D) counterpart. The Nernst effects significantly alter the magnetic field convection and amplify the magnetic fields. The magnetic field of thousands of teslas yields the Hall parameter of the order of unity, leading to profound magnetized heat flux modification. While the magnetic field significantly accelerates the bubble growth in the short-wavelength 2-D modes through modifying the heat fluxes, the magnetic field mostly accelerates the spike growth but has little influence on the bubble growth in 3-D ARTI. The accelerated growth of spikes in 3-D ARTI is expected to enhance material mixing and degrade ICF implosion performance. This work is focused on a regime relevant to direct-drive ICF parameters at the National Ignition Facility, and it also covers a range of key parameters that are relevant to other ICF designs and hydrodynamic/astrophysical scenarios.
By integrating the theory of purposeful work behavior with the person-environment (P-E) fit literature, we employ a bilateral approach to examine how employee-supervisor congruence in purposeful work striving (i.e., achievement striving) influences employee voice behavior via an internal motivation mechanism (i.e., organizational identification). Using polynomial regressions with response surface modeling, we analyze data from 827 employees and their 197 supervisors in two studies. The results show that achievement-driven employees are more likely to speak up when employee-supervisor achievement striving is congruent, regardless of whether it is high or low. Furthermore, employee-supervisor congruence in achievement striving enhances employees’ felt oneness with the organization and organizational identification, which in turn fuels their voice behavior. We conclude with theoretical and practical implications.
Continuum robot has become a research hotspot due to its excellent dexterity, flexibility and applicability to constrained environments. However, the effective, secure and accurate path planning for the continuum robot remains a challenging issue, for that it is difficult to choose a suitable inverse kinematics solution due to its redundancy in the confined environment. This paper presents a collision-free path planning method based on the improved artificial potential field (APF) for the cable-driven continuum robot, in which the beetle antennae search algorithm is adopted to deal with the optimal problem of APF without the necessary for velocity kinematics. In addition, the local optimum problem of traditional APF is solved by the randomness of the antennae’s direction vector which can make the algorithm easily jump out of local minima. The simulation and experimental results verify the efficiency of the proposed path planning method.
In the present study, acid-modified attapulgite was used, as an adsorbent, to remove as much Cd2+ as possible from aqueous solution. Static adsorption experiments using powdered acid-modified attapulgite, and dynamic adsorption using granular acid-modifed attapulgite, were conducted to explore the practical application of modified attapulgite in the adsorption of Cd2+. The modified attapulgite had a larger specific surface area and thinner fibrous crystals than the unmodified version. No obvious differences were noted, in terms of the crystal structure, between the natural attapulgite and the modified version. The effects of initial concentration, pH, contact time, and ionic strength on the adsorption of Cd2+ were investigated, and the results showed that the adsorption capacity of the modified attapulgite was increased with increasing pH and the initial Cd2+ concentration. The adsorption properties were analyzed by means of dynamic adsorption tests with respect to various Cd2+ concentrations and flow rates. The maximum adsorption capacity of 8.83 mg/g occurred at a flow rate of 1 mL/min and at an initial concentration of 75 mg/L. Because there was better accord between the data and a pseudo-second order model than a pseudo-first-order model, external mass transfer is suggested to be the rate-controlling process. The experimental data were also fitted for the intraparticle diffusion model, implying that the intraparticle diffusion of Cd2+ onto the modified attapulgite was also important for controlling the adsorption process. The Bohart-Adams model was more suitable than the Thomas model for describing the dynamic behavior with respect to the flow rate and the initial Cd2+ concentration. This research provided the theoretical basis for the dynamic adsorption of Cd2+ on the modified attapulgite. Compared to the powdered modified attapulgite, the dynamic adsorption by granular modified attapulgite appeared more favorable in terms of practical application.
In this study, the effects of antagonistic muscle actuation on the propulsion of a bilaminar-structure fish fin ray were investigated using a two-dimensional computational flow–structure interaction (FSI) model. The structure and material properties of the model were based on the realistic biological data of the sunfish fin. The effect of muscle actuation was modelled using root displacement offset between the two hemitrichs. Parametric FSI simulations were conducted by assuming a sinusoidal function of the offset over a cycle and varying the amplitude and phase difference between the actuations and pitching/plunging motions. The results show that the phase of muscle actuation is a critical factor affecting its effects. Three performance regions can be identified with different phase ranges, including a thrust-favour region, an efficiency-favour region and a thrust-efficiency-unfavour region. In each region, the relationships among the root actuations, fin-ray kinematics, vortex dynamics and resulting performance are studied and discussed. Furthermore, a strong positive correlation between the trailing–leading amplitude ratio and thrust coefficient as well as a negative relationship between the efficiency and angle of attack at the centre of mass of the fin ray are observed.
Pulse shaping is a powerful tool for mitigating implosion instabilities in direct-drive inertial confinement fusion (ICF). However, the high-dimensional and nonlinear nature of implosions makes the pulse optimization quite challenging. In this research, we develop a machine-learning pulse shape designer to achieve high compression density and stable implosion. The facility-specific laser imprint pattern is considered in the optimization, which makes the pulse design more relevant. The designer is applied to the novel double-cone ignition scheme, and simulation shows that the optimized pulse increases the areal density expectation by 16% in one dimension, and the clean-fuel thickness by a factor of four in two dimensions. This pulse shape designer could be a useful tool for direct-drive ICF instability control.
This study aimed to evaluate the recent prevalence and the distributions of morphological subtypes of anaemia in the rural population.
Design:
Anaemia was defined according to the WHO and the Chinese criteria, and the morphological subtypes of anaemia were classified based on the erythrocyte parameters. The age-standardised prevalence was calculated according to the data of the Population Census 2010 in China.
Setting:
A cross-sectional study in Henan Province.
Participants:
33 585 subjects aged 18–79 years old.
Results:
The standardised prevalence of anaemia across the WHO and the Chinese definitions was 13·63 % and 5·45 %, respectively. Regardless of which criteria was used, the standardised prevalence of anaemia was higher among women than among men and that increased with age in men, while markedly decreased after menopause in women. There were shifts in morphological patterns of anaemia using the WHO and the Chinese criteria that the standardised prevalence of microcytic anaemia was 3·74 % and 2·97 %, normocytic anaemia was 9·20 % and 2·34 %, and macrocytic anaemia was 0·75 % and 0·14 %, respectively. Besides, there were differences in the influencing factors of anaemia according to different criteria or gender. However, age, education level and renal damage were consistently significantly associated with anaemia in all participants.
Conclusions:
Anaemia may still be a serious health problem in rural China. It is necessary to reformulate prevention and management strategies to reduce the disease burden of anaemia.
In this paper, we prove that the ratio of the modulus of the iterates of two points in an escaping Fatou component could be bounded even if the orbit of the component contains a sequence of annuli whose moduli tend to infinity, and this cannot happen when the maximal modulus of the meromorphic function is uniformly large enough. In this way we extend certain related results for entire functions to meromorphic functions with infinitely many poles.
The mitochondrial genome provides important information for phylogenetic analysis and an understanding of evolutionary origin. In this study, the mitochondrial genomes of Ilisha elongata and Setipinna tenuifilis were sequenced, which are typical circular vertebrate mitochondrial genomes composed of 16,770 and 16,805 bp, respectively. The mitogenomes of I. elongata and S. tenuifilis include 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA), two ribosomal RNA (rRNA) genes and one control region (CR). Both two species' genome compositions were highly A + T biased and exhibited positive AT-skews and negative GC-skews. The genetic distance and Ka/Ks ratio analyses indicated that 13 PCGs were affected by purifying selection and the selection pressures were different from certain deep-sea fishes, which were most likely due to the difference in their living environment. Results of phylogenetic analysis support close relationships among Chirocentridae, Denticipitidae, Clupeidae, Engraulidae and Pristigasteridae based on the nucleotide and amino acid sequences of 13 PCGs. Within Clupeoidei, I. elongata and S. tenuifilis were most closely related to the family Pristigasteridae and Engraulidae, respectively. These results will help to better understand the evolutionary position of Clupeiformes and provide a reference for further phylogenetic research on Clupeiformes species.
Recently, the collisionless pitch-angle scattering for relativistic runaway electrons (REs) in toroidal geometries such as tokamaks was discovered through a full orbit simulation approach (Liu et al., Nucl. Fusion, vol. 56, 2016, p. 064002), and it was then theoretically investigated that a new expression for the magnetic moment, including the second-order corrections, could essentially reproduce the so-called collisionless pitch-angle scattering process (Liu et al., Nucl. Fusion, vol. 58, 2018, p. 106018). In this paper, with synchrotron radiation, extensive numerical verification of the validity of the high-order guiding-centre theory is given for simulations involving REs by incorporating such an expression for the magnetic moment into our particle tracing code. A high-order guiding-centre simulation approach with synchrotron radiation (HGSA) is applied. Synchrotron radiation plays an essential role in the life cycle of REs. The energy of REs first increases and then becomes saturated until the electric field acceleration is balanced by the radiation dissipation. Unfortunately, the process cannot be simulated accurately with the standard guiding-centre model, i.e. the first-order guiding-centre model. Remarkably, it is found that the HGSA can effectively produce the fundamental process of REs. Since the time scale of the energy saturation of REs is close to seconds, the computational cost becomes significant. In order to save costs, it is necessary to estimate the time of energy saturation. An analytical estimate is derived for the time it takes for synchrotron drag to balance an accelerating electric field and the provided formula has been numerically verified. Test calculations reveal that HGSA is favourable for exploiting the dynamics of REs in tokamak plasmas.
COVID-19 has long-term impacts on public mental health, while few research studies incorporate multidimensional methods to thoroughly characterise the psychological profile of general population and little detailed guidance exists for mental health management during the pandemic. This research aims to capture long-term psychological profile of general population following COVID-19 by integrating trajectory modelling approaches, latent trajectory pattern identification and network analyses.
Methods
Longitudinal data were collected from a nationwide sample of 18 804 adults in 12 months after COVID-19 outbreak in China. Patient Health Questionnaire-9, Generalised Anxiety Disorder-7 and Insomnia Severity Index were used to measure depression, anxiety and insomnia, respectively. The unconditional and conditional latent growth curve models were fitted to investigate trajectories and long-term predictors for psychological symptoms. We employed latent growth mixture model to identify the major psychological symptom trajectory patterns, and ran sparse Gaussian graphical models with graphical lasso to explore the evolution of psychopathological network.
Results
At 12 months after COVID-19 outbreak, psychological symptoms generally alleviated, and five psychological symptom trajectories with different demographics were identified: normal stable (63.4%), mild stable (15.3%), mild-increase to decrease (11.7%), mild-decrease to increase (4.0%) and moderate/severe stable (5.5%). The finding indicated that there were still about 5% individuals showing consistently severe distress and approximately 16% following fluctuating psychological trajectories, who should be continuously monitored. For individuals with persistently severe trajectories and those with fluctuating trajectories, central or bridge symptoms in the network were mainly ‘motor abnormality’ and ‘sad mood’, respectively. Compared with initial peak and late COVID-19 phase, aftermath of initial peak might be a psychologically vulnerable period with highest network connectivity. The central and bridge symptoms for aftermath of initial peak (‘appetite change’ and ‘trouble of relaxing’) were totally different from those at other pandemic phases (‘sad mood’).
Conclusions
This research identified the overall growing trend, long-term predictors, trajectory classes and evolutionary pattern of psychopathological network of psychological symptoms in 12 months after COVID-19 outbreak. It provides a multidimensional long-term psychological profile of the general population after COVID-19 outbreak, and accentuates the essentiality of continuous psychological monitoring, as well as population- and time-specific psychological management after COVID-19. We believe our findings can offer reference for long-term psychological management after pandemics.
This paper examines the economic implications of the tariff increases by the United States and by China during the Trump era trade dispute and the gains from their potential removal. The increases were dramatic, with the US raising tariffs on industrial products by a factor of six – with particularly large tariff increases on intermediate and capital goods – and China increasing its tariffs on US agricultural products more than five-fold. These changes distort trade and production decisions in both countries and undercut the global trading system. They resulted in substantial economic losses to each country, with import volumes reduced by 4.9% in China and 4.5% in the USA, and bilateral trade patterns were massively distorted. Their cost to the United States rose at the end of 2021, when the import expansion provisions of the Trump era Phase One Agreement expired. Negotiating the abolition of these costly and disruptive tariffs would generate substantial real income gains for both countries and help lower US consumer prices.
The optimization of laser pulse shapes is of great importance and a major challenge for laser direct-drive implosions. In this paper, we propose an efficient intelligent method to perform laser pulse optimization via hydrodynamic simulations guided by the genetic algorithm and random forest algorithm. Compared to manual optimizations, the machine-learning guided method is able to efficiently improve the areal density by a factor of 63% and reduce the in-flight-aspect ratio by a factor of 30% at the same time. A relationship between the maximum areal density and ion temperature is also achieved by the analysis of the big simulation dataset. This design method has been successfully demonstrated by the 2021 summer double-cone ignition experiments conducted at the SG-II upgrade laser facility and has great prospects for the design of other inertial fusion experiments.
We evaluated the distributions of dental splatters and the corresponding control measure effects with high-speed videography and laser diffraction. Most of the dental splatters were small droplets (<50 μm). High-volume evacuation combined with a suction air purifier could clear away most of the droplets and aerosols.