We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A systematic study is conducted both experimentally and theoretically on the wake-induced vibration of an inelastic or zero structural stiffness cylinder placed behind a perfectly elastic or rigid cylinder. The mass ratio m* of the inelastic cylinder is 11.1. The spacing ratio L/D is 2.0–6.0, where L is the distance between centers of the two cylinders, and D is the cylinder diameter. The range of Reynolds number Re is 1.97 × 103–1.18 × 104. It has been found that the inelastic cylinder becomes aerodynamically elastic because the cylinder and the fluctuating wake interact, inducing an effective stiffness and thus giving rise to an aeroelastic natural frequency. This frequency depends on the added mass, fluid damping and flow-induced stiffness and is always smaller than the vortex shedding frequency, irrespective of Re and L/D. The wake-induced vibration of the inelastic cylinder may be divided into a desynchronisation branch and a galloping branch. The vibration amplitude jumps greatly at the transition from desynchronisation to galloping for L/D = 2.0–4.5 but not so for L/D = 5.0–6.0. The flow-induced stiffness is linearly correlated with Re, generally higher in the reattachment regime than in the coshedding regime and smaller in galloping than in desynchronisation. Other aspects of the inelastic cylinder are also investigated in detail, including the dependence on Re of the Strouhal numbers, hydrodynamic forces, phase lag between lift and displacement and flow characteristics.
Multiple osteoarticular tuberculosis (MOT) represents an uncommon yet severe form of tuberculosis, characterized by a lack of systematic analysis and comprehension. Our objective was to delineate MOT’s epidemiological characteristics and establish a scientific foundation for prevention and treatment. We conducted searches across eight databases to identify relevant articles. Pearson’s chi-square test (Fisher’s exact test) and Bonferroni method were employed to assess osteoarticular involvement among patients of varying age and gender (α = 0.05). The study comprised 98 articles, encompassing 151 cases from 22 countries, with China and India collectively contributing 67.55% of cases. MOT predominantly affected individuals aged 0–30 years (58.94%). Pulmonary tuberculosis was evident in 16.55% of cases, with spinal involvement prevalent (57.62%). Significant differences were noted in trunk, spine, thoracic, and lumbar vertebrae involvement, as well as type I lesions across age groups, increasing with age. Moreover, significant differences were observed in upper limb bone involvement and type II lesions across age groups, decreasing with age. Gender differences were not significant. MOT primarily manifests in China and India, predominantly among younger individuals, indicating age-related variations in osteoarticular involvement. Enhanced clinical awareness is crucial for accurate MOT diagnosis, mitigating missed diagnoses and misdiagnoses.
We study the melting process of a solid under microgravity, driven solely by lateral vibrations that are perpendicular to the applied temperature gradient due to the absence of gravity-induced convection. Using direct numerical simulations with the phase-field method, we examine two-dimensional vibration-induced melting in a square cavity over four orders of magnitude of vibrational Rayleigh numbers, $10^5\le Ra_{{vib}}\le 10^9$. Our results show that as melting progresses, the flow structure transitions from a periodic-circulation regime with diffusion-dominated heat transfer to a columnar regime with vibroconvection. The mean height of the liquid–solid interface follows a power-law dependency with time, $\bar {\xi } \sim \tilde t^{1/(2-2\alpha )}$, where $\alpha = 0$ in the periodic-circulation regime and $\alpha = 1/2$ in the columnar regime. We further observe that within the columnar regime, the morphological evolution of the liquid–solid interface is influenced by the interaction of columnar thermal plumes in the central regions and the peripheral flow near the sidewalls. Specifically, we offer a comprehensive analysis of the plume merging behaviour, which is governed by the aspect ratio ($\bar {\xi }$) of the liquid layer and the intensity of vibration, quantified by the effective vibrational Rayleigh number $Ra_{vib}^{eff}$. We identify the relationship between the number of columnar plumes $K_m$ and $Ra_{vib}^{eff}$, finding that $K_m \sim \bar {\xi }^{-1} (Ra_{vib}^{eff})^{\gamma }$ with the fitting scaling exponent $\gamma = 0.150 \pm 0.025$. We subsequently quantify the characteristics of the interface roughness amplitude evolution in microgravity vibroconvection. Our results indicate that the roughness amplitude exhibits a power-law dependence on the mean height of the liquid layer. Drawing from the Stefan boundary condition, we theoretically deduce this dependence under the assumption of a non-uniform heat flux distribution at the interface, where the theory is corroborated by our numerical simulations.
Despite global efforts to end tuberculosis (TB), the goal of preventing catastrophic health expenditure (CHE) due to TB remains unmet. This cross-sectional study was conducted in Guizhou Province, Southwest China. Data were collected from the Hospital Information System and a survey of TB patients who had completed standardized antituberculosis treatment between January and March 2021. Among the 2 283 participants, the average total expenditure and out-of-pocket expenditure were $1 506.6 (median = $760.5) and $683.6 (median = $437.8), respectively. Health insurance reimbursement reduced CHE by 16.8%, with a contribution rate of 24.9%, and the concentration index changed from -0.070 prereimbursement to -0.099 postreimbursement. However, the contribution of health insurance varied significantly across different economic strata, with contribution rates of 6.4% for the lowest economic group and 53.1% for the highest group. For patients from lower socioeconomic strata, health insurance contributed 10.7% to CHE in the prediagnostic phase and 23.5% during treatment. While social health insurance alleviated the financial burden for TB patients, it did not provide sufficient protection for those in lower economic strata or during the prediagnostic stage. This study underscores the need for more effective and equitable subsidy policies for TB patients .
This paper proposes a nonparametric approach to identify and estimate the generalized additive model with a flexible additive structure and with possibly discrete variables when the link function is unknown. Our approach allows for a flexible additive structure which provides applied researchers the flexibility to specify their model according to economic theory or practical experience. Motivated by the concerns from empirical research, our method also allows for multiple discrete variables in the covariates. By transforming our model into a generalized additive model with univariate component functions, our identification and estimation thereby follows a procedure adapted from the case with univariate components. The estimators converge to normal distributions in large sample with a one-dimensional convergence rate for the link function and a $d_k$-dimensional convergence rate for the component function $f_k(\cdot )$ defined on ${\mathbb R}^{d_k}$ for all k.
Tea can improve the progression of some metabolic diseases through anti-inflammatory and antioxidant effects, but its impact on non-alcoholic fatty liver disease (NAFLD) is still controversial. The aim of this paper is to identify the relationship between tea and NAFLD by Mendelian randomisation (MR) and complete clinical validation using National Health and Nutrition Examination Survey (NHANES) database. MR used data from Genome Wide Association Study, with inverse-variance weighted (IVW) as principal analytical methods. The reliability of the results was verified by a series of sensitivity and heterogeneity tests. Subsequently, clinical validation was conducted using NHANES (2005–2018), involving 22 257 participants, grouped by the type of tea. Green tea drinkers were categorised into four groups (Q1–Q4) by quartiles of green tea intake, from lowest to highest (similar for black tea drinkers and other tea drinkers). Models were constructed by logistic regression to estimate the role of tea consumption (Q1–4) on NAFLD. Finally, using fibrosis-4 index (FIB-4) to evaluate the severity of hepatic fibrosis, the effect of tea consumption (Q1–4) on the degree of hepatic fibrosis was investigated by linear regression. IVW method (OR = 0·43, 95 % CI: 0·21, 0·85, P = 0·01) and weighted median method (OR = 0·35, 95 % CI: 0·14, 0·91, P = 0·03) revealed there was a causal relationship between tea and NAFLD. An array of sensitivity analyses validated the reliability of results. Analysis of NHANES indicated tea drinker present a slightly lower prevalence of NAFLD than non-tea drinker (green tea drinkers: 47·6 %, black tea drinkers: 46·3 %, other tea drinker: 43·2 %, non-tea drinkers: 48·1 %, P < 0·05). After adjusting for confounders, compared with the lowest black tea consumption (Q1), the population with the highest black tea consumption (Q4) was independently related to lower presence of NAFLD (Q4: OR = 0·69, 95 % CI: 0·50, 0·93, P < 0·05), such association remained stable in the overweight subgroup. As further analysed, Q4 also displayed a significant negative correlation with the level of hepatic fibrosis in patients with NAFLD (β = –0·073, 95 % CI: –0·126, −0·020, P < 0·01).Tea reduces the morbidity of NAFLD and ameliorates hepatic fibrosis degree in those already suffering from the disease.
The tribological behavior can be informative about the incipient faults of robot manipulators. This study explores the evolution of friction characteristics from cold start to thermal equilibrium through a series of steady-state friction experiments. Based on these experimental observations, a friction-based fault diagnosis framework is proposed. The fault diagnosis process primarily involves defining the healthy state, decomposing friction curves and their features, and anomaly detection. Given the dependence of friction characteristics on different sources of faults, the parameters of steady-state experimental friction model are divided into two categories: one associated with contact interactions and the other related to non-contact regimes. Subsequently, confidence regions corresponding to distinguishable friction characteristics are independently constructed. These regions encapsulate the statistical description of the healthy state, characterized by mean values and the covariance of the friction characteristic parameter vectors during the unloaded state. In addition, we conduct experiments that consider the influence of applied loads on friction behavior. These experiments serve as a test set for comparison against nominal statistics. Leveraging the similarity between the effects of wear and load on friction, we introduce equivalent load thresholds to assess the severity of joint degradation. The results demonstrate the feasibility of employing confidence region views based on friction characteristic classification for fault detection and isolation.
We investigated the kinematics and dynamics of gas structures on galaxy-cloud scales in two spiral galaxies NGC5236 (M83) and NGC4321 (M100) using CO (2$-$1) line. We utilised the FILFINDER algorithm on integrated intensity maps for the identification of filaments in two galaxies. Clear fluctuations in velocity and density were observed along these filaments, enabling the fitting of velocity gradients around intensity peaks. The variations in velocity gradient across different scales suggest a gradual and consistent increase in velocity gradient from large to small scales, indicative of gravitational collapse, something also revealed by the correlation between velocity dispersion and column density of gas structures. Gas structures at different scales in the galaxy may be organised into hierarchical systems through gravitational coupling. All the features of gas kinematics on galaxy-cloud scale are very similar to that on cloud-clump and clump-core scales studied in previous works. Thus, the interstellar medium from galaxy to dense core scales presents multi-scale/hierarchical hub-filament structures. Like dense core as the hub in clump, clump as the hub in molecular cloud, now we verify that cloud or cloud complex can be the hub in spiral galaxies. Although the scaling relations and the measured velocity gradients support the gravitational collapse of gas structures on galaxy-cloud scales, the collapse is much slower than a pure free-fall gravitational collapse.
We report the unified constitutive law of vibroconvective turbulence in microgravity, i.e. $Nu \sim a^{-1} Re_{os}^\beta$ where the Nusselt number $Nu$ measures the global heat transport, $a$ is the dimensionless vibration amplitude, $Re_{os}$ is the oscillational Reynolds number and $\beta$ is the universal exponent. We find that the dynamics of boundary layers plays an essential role in vibroconvective heat transport and the $Nu$-scaling exponent $\beta$ is determined by the competition between the thermal boundary layer (TBL) and vibration-induced oscillating boundary layer (OBL). Then a physical model is proposed to explain the change of scaling exponent from $\beta =2$ in the TBL-dominant regime to $\beta = 4/3$ in the OBL-dominant regime. Our finding elucidates the emergence of universal constitutive laws in vibroconvective turbulence, and opens up a new avenue for generating a controllable effective heat transport under microgravity or even microfluidic environment in which the gravity effect is nearly absent.
We conducted a systematic numerical investigation of spherical, prolate and oblate particles in an inertial shear flow between two parallel walls, using smoothed particle hydrodynamics (SPH). It was previously shown that above a critical Reynolds number, spherical particles experience a supercritical pitchfork bifurcation of the equilibrium position in shear flow between two parallel walls, namely that the central equilibrium position becomes unstable, leading to the emergence of two new off-centre stable positions (Fox et al., J. Fluid Mech., vol. 915, 2021). This phenomenon was unexpected given the symmetry of the system. In addition to confirming this finding, we found, surprisingly, that ellipsoidal particles can also return to the centre position from the off-centre positions when the particle Reynolds number is further increased, while spherical particles become unstable under this increased Reynolds number. By utilizing both SPH and the finite element method for flow visualization, we explained the underlining mechanism of this reverse of bifurcation by altered streamwise vorticity and symmetry breaking of pressure. Furthermore, we expanded our investigation to include asymmetric particles, a novel aspect that had not been previously modelled, and we observed similar trends in particle dynamics for both symmetric and asymmetric ellipsoidal particles. While further validation through laboratory experiments is necessary, our research paves the road for development of new focusing and separation methods for shaped particles.
Many studies have demonstrated that teaching a foreign language in settings outside of the classroom can improve the communicative use of the target language. However, many places remain inaccessible to learners due to physical limits of mobility and health, socioeconomic factors, or political or temporal restraints. Our previous studies have shown that telepresence robots are successful in immersing learners in remote places for learning a foreign language. The aim of this study is to analyze, through the theoretical lens of geosemiotics, how dialogic interaction between different semiotic systems emerges within the use of telepresence technology to understand how these systems shape discourse and meaning-making processes. It also considers what instructional strategies support such meaning-making with telepresence robotics, and what meaning-making principles can help improve the design of the robot. Initial findings show that properly planning the use of specific places provides ample opportunity for semiotic systems to shape the instructors’ and students’ meaning-making processes. Future research is needed to address some of the challenges to participants that are related to the design of the robot.
Previous studies revealed that consuming spicy food reduced mortality from CVD and lowered stroke risk. However, no studies reported the relationship between spicy food consumption, stroke types and dose–response. This study aimed to further explore the association between the frequency of spicy food intake and the risk of stroke in a large prospective cohort study. In this study, 50 174 participants aged 30–79 years were recruited. Spicy food consumption data were collected via a baseline survey questionnaire. Outcomes were incidence of any stroke, ischaemic stroke (IS) and haemorrhagic stroke (HS). Multivariable-adjusted Cox proportional hazard models estimated the association between the consumption of spicy food and incident stroke. Restricted cubic spline analysis was used to examine the dose–response relationship. During the median 10·7-year follow-up, 3967 strokes were recorded, including 3494 IS and 516 HS. Compared with those who never/rarely consumed spicy food, those who consumed spicy food monthly, 1–2 d/week and 3–5 d/week had hazard ratio (HR) of 0·914 (95 % CI 0·841, 0·995), 0·869 (95 % CI 0·758, 0·995) and 0·826 (95 % CI 0·714, 0·956) for overall stroke, respectively. For IS, the corresponding HR) were 0·909 (95 % CI 0·832, 0·994), 0·831 (95 % CI 0·718, 0·962) and 0·813 (95 % CI 0·696, 0·951), respectively. This protective effect showed a U-shaped dose–response relationship. For obese participants, consuming spicy food ≥ 3 d/week was negatively associated with the risk of IS. We found the consumption of spicy food was negatively associated with the risk of IS and had a U-shaped dose–response relationship with risk of IS. Individuals who consumed spicy food 3–5 d/week had a significantly lowest risk of IS.
Landfill leachate is one of the most difficult effluents with which to deal from an environmental perspective because of its concentration and complex composition, including refractory and toxic components such as heavy metals or xenobiotic organic compounds. The objective of the present study was to use organically modified bentonite (OMB) to dispose of landfill leachate >10 y old. The OMB was synthesized using a new method, which removed four steps (filtering, washing, drying, and grinding) from the traditional process. After treatment using OMB, the chemical oxygen demand concentration (COD concentration, an index of the organic pollutants in the landfill leachate, was determined using the potassium dichromate method) of the landfill leachate sample decreased from 2400 to 245 mg/L in 5 h, i.e. the organic pollutants reduction efficiency was as high as 90%. Gas chromatography-mass spectrometry results indicated that most of the organic compounds were removed during the process. The modified and unmodified bentonite contained in the OMB deal with the hydrophobic and hydrophilic organic pollutants, respectively, resulting in significant degradation of the leachate. The study results have provided a new cost-effective method for treatment of landfill leachate.
This study investigates the effect of vibration on the flow structure transitions in thermal vibrational convection (TVC) systems, which occur when a fluid layer with a temperature gradient is excited by vibration. Direct numerical simulation (DNS) of TVC in a two-dimensional enclosed square box is performed over a range of dimensionless vibration amplitudes $0.001 \le a \le 0.3$ and angular frequencies $10^{2} \le \omega \le 10^{7}$, with a fixed Prandtl number of 4.38. The flow visualisation shows the transition behaviour of flow structure upon the varying frequency, characterising three distinct regimes, which are the periodic-circulation regime, columnar regime and columnar-broken regime. Different statistical properties are distinguished from the temperature and velocity fluctuations at the boundary layer and mid-height. Upon transition into the columnar regime, columnar thermal coherent structures are formed, in contrast to the periodic oscillating circulation. These columns are contributed by the merging of thermal plumes near the boundary layer, and the resultant thermal updrafts remain at almost fixed lateral position, leading to a decrease in fluctuations. We further find that the critical point of this transition can be described nicely by the vibrational Rayleigh number ${{Ra}}_{vib}$. As the frequency continues to increase, entering the so-called columnar-broken regime, the columnar structures are broken, and eventually the flow state becomes a large-scale circulation (LSC), characterised by a sudden increase in fluctuations. Finally, a phase diagram is constructed to summarise the flow structure transition over a wide range of vibration amplitude and frequency parameters.
Multilayer dielectric gratings (MLDGs) are crucial for pulse compression in picosecond–petawatt laser systems. Bulged nodular defects, embedded in coating stacks during multilayer deposition, influence the lithographic process and performance of the final MLDG products. In this study, the integration of nanosecond laser conditioning (NLC) into different manufacturing stages of MLDGs was proposed for the first time on multilayer dielectric films (MLDFs) and final grating products to improve laser-induced damage performance. The results suggest that the remaining nodular ejection pits introduced by the two protocols exhibit a high nanosecond laser damage resistance, which remains stable when the irradiated laser fluence is more than twice the nanosecond-laser-induced damage threshold (nanosecond-LIDT) of the unconditioned MLDGs. Furthermore, the picosecond-LIDT of the nodular ejection pit conditioned on the MLDFs was approximately 40% higher than that of the nodular defects, and the loss of the grating structure surrounding the nodular defects was avoided. Therefore, NLC is an effective strategy for improving the laser damage resistance of MLDGs.
A high-power all polarization-maintaining (PM) chirped pulse amplification (CPA) system operating in the 2.0 μm range is experimentally demonstrated. Large mode area (LMA) thulium-doped fiber (TDF) with a core/cladding diameter of 25/400 μm is employed to construct the main amplifier. Through dedicated coiling and cooling of the LMA-TDF to manage the loss of the higher order mode and thermal effect, a maximum average power of 314 W with a slope efficiency of 52% and polarization extinction ratio of 20 dB is realized. The pulse duration is compressed to 283 fs with a grating pair, corresponding to a calculated peak power of 10.8 MW, considering the compression efficiency of 88% and the estimated Strehl ratio of 89%. Moreover, through characterizing the noise properties of the laser, an integrated relative intensity noise of 0.11% at 100 Hz−1 MHz is obtained at the maximum output power, whereas the laser timing jitter is degraded by the final amplifier from 318 to 410 fs at an integration frequency of 5 kHz to 1 MHz, owing to the self-phase modulation effect-induced spectrum broadening. The root-mean-square of long-term power fluctuation is tested to be 0.6%, verifying the good stability of the laser operation. To the best of our knowledge, this is the highest average power of an ultrafast laser realized from an all-PM-fiber TDF-CPA system ever reported.
We present the results of two population surveys conducted 10 years apart (December 2010–February 2011 and December 2020–January 2021) of the Critically Endangered white-headed langur Trachypithecus leucocephalus in the Chongzuo White-Headed Langur National Nature Reserve, Guangxi Province, China. In the first survey, we recorded 818 individuals in 105 groups and 16 solitary adult males. In the second survey, we recorded 1,183 individuals in 128 groups and one solitary adult male. As a result of government policies, poaching for food and traditional medicine is no longer a primary threat to these langurs. However, severe forest loss and fragmentation caused by human activities could limit any future increase of this langur population.
Large-scale Ulva prolifera green tides have successively occurred for 16 years (2007–2022) in the Yellow Sea (YS), and the different life stages of U. prolifera play critical roles in regulating the occurrence and development of green tides. U. prolifera and microalgae have a similar niche in seawater, but their potential interactions are not yet clearly understood. In this study, we investigated the competition relationship between two microalgae and U. prolifera at five different development stages in controlled laboratory experiments. The results showed that one microalgae Alexandrium tamarense, can only inhibit U. prolifera gametes at the first settlement stage. Inversely, the germinated U. prolifera begin to show negative effects on microalgae in multiple ways at the subsequent four stages, and the growth inhibition rates among these stages ranged from 19 to 100%. The complex interactions may influence the formation of green tides. Meanwhile, the potential ecological consequences on phytoplankton, even the decreased occurrence of microalgal blooms in the YS need to be further evaluated.
An all-fiber high-power linearly polarized chirped pulse amplification (CPA) system is experimentally demonstrated. Through stretching the pulse duration to a full width of approximately 2 ns with two cascaded chirped fiber Bragg gratings (CFBGs), a maximum average output power of 612 W is achieved from a high-gain Yb-doped fiber that has a core diameter of 20 μm with a slope efficiency of approximately 68% at the repetition rate of 80 MHz. At the maximum output power, the polarization degree is 92.5% and the M2 factor of the output beam quality is approximately 1.29; the slight performance degradations are attributed to the thermal effects in the main amplifier. By optimizing the B-integral of the amplifier and finely adjusting the higher-order dispersion of one of the CFBGs, the pulse width is compressed to 863 fs at the highest power with a compression efficiency of 72%, corresponding to a maximum compressed average power of 440.6 W, single pulse energy of 5.5 μJ and peak power of about 4.67 MW. To the best of our knowledge, this is the highest average power of a femtosecond laser directly generated from an all-fiber linearly polarized CPA system.