We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Excessive car ownership in cities has led to issues including congestion, air pollution and resource consumption. This paper investigates the impact of rail transit openings on automobile purchases in China based on detailed car sales data during 2013–2015 and using two-way fixed effects panel models. Our study reveals an average decrease of 2.27 per cent in car sales due to rail transit openings. Further analyses of cars with different fuel economy reveal stronger effects on fuel-efficient cars, indicating larger substitution elasticity between public transportation and driving for people with less income. Results also show the negative impact of rail transit openings is larger in cities with more developed economies, higher public revenue, larger population, bigger area and fewer buses. The decline in car sales translates into savings of 7.9 billion liters of gasoline and a reduction of about 20.3 million tons in life-cycle carbon emissions.
Overnutrition during before and pregnancy can cause maternal obesity and raise the risk of maternal metabolic diseases during pregnancy, and in offspring. Lentinus edodes may prevent or reduce obesity. This study aimed to to assess Lentinus edodes fermented products effects on insulin sensitivity, glucose and lipid metabolism in maternal and offspring, and explore its action mechanism. A model of overnutrition during pregnancy and lactation was developed using a 60 % kcal high-fat diet in C57BL6/J female mice. Fermented Lentinus edodes (FLE) was added to the diet at concentrations of 1 %, 3 %, and 5 %. The results demonstrated that FLE to the gestation diet significantly reduced serum insulin levels and homeostatic model assessment for insulin resistance (HOMA-IR) in pregnant mice. FLE can regulate maternal lipid metabolism and reduce fat deposition. Meanwhile, the hepatic phosphoinositide-3-kinase-protein kinase (PI3K/AKT) signaling pathway was significantly activated in the maternal mice. There is a significant negative correlation between maternal FLE supplementation doses and offspring body fat percentage and visceral fat content. Furthermore, FLE supplementation significantly increased offspring weaning litter weight, significantly reduced fasting glucose level, serum insulin level, HOMA-IR and serum glucose level, significantly activated liver PI3K/AKT signaling pathway in offspring, and upregulated the expression of liver lipolytic genes adipose triglyceride lipase, hormone-sensitive lipase and carnitine palmitoyltransferase 1 mRNA. Overall, FLE supplementation can regulate maternal lipid metabolism and reduce fat deposition during pregnancy and lactation, and it may improve insulin sensitivity in pregnant mothers and offspring at weaning through activation of the PI3K/AKT signaling pathway.
Working memory deficit, a key feature of schizophrenia, is a heritable trait shared with unaffected siblings. It can be attributed to dysregulation in transitions from one brain state to another.
Aims
Using network control theory, we evaluate if defective brain state transitions underlie working memory deficits in schizophrenia.
Method
We examined average and modal controllability of the brain's functional connectome in 161 patients with schizophrenia, 37 unaffected siblings and 96 healthy controls during a two-back task. We use one-way analysis of variance to detect the regions with group differences, and correlated aberrant controllability to task performance and clinical characteristics. Regions affected in both unaffected siblings and patients were selected for gene and functional annotation analysis.
Results
Both average and modal controllability during the two-back task are reduced in patients compared to healthy controls and siblings, indicating a disruption in both proximal and distal state transitions. Among patients, reduced average controllability was prominent in auditory, visual and sensorimotor networks. Reduced modal controllability was prominent in default mode, frontoparietal and salience networks. Lower modal controllability in the affected networks correlated with worse task performance and higher antipsychotic dose in schizophrenia (uncorrected). Both siblings and patients had reduced average controllability in the paracentral lobule and Rolandic operculum. Subsequent out-of-sample gene analysis revealed that these two regions had preferential expression of genes relevant to bioenergetic pathways (calmodulin binding and insulin secretion).
Conclusions
Aberrant control of brain state transitions during task execution marks working memory deficits in patients and their siblings.
Previous studies have suggested that the habenula (Hb) may be involved in the mechanism of obsessive-compulsive disorder (OCD). However, the specific role of Hb in OCD remains unclear. This study aimed to explore the structural and functional abnormalities of Hb in OCD and their relationship with the clinical symptoms.
Methods
Eighty patients with OCD and 85 healthy controls (HCs) were recruited as the primary dataset. The grey matter volume, resting-state functional connectivity (FC), and effective connectivity (EC) of the Hb were calculated and compared between OCD group and HCs. An independent replication dataset was used to verify the stability and robustness of the results.
Results
Patients with OCD exhibited smaller Hb volume and increased FC of right Hb-left hippocampus than HCs. Dynamic causal model revealed an increased EC from left hippocampus to right Hb and a less inhibitory causal influence from the right Hb to left hippocampus in the OCD group compared to HCs. Similar results were found in the replication dataset.
Conclusions
This study suggested that abnormal structure of Hb and hippocampus-Hb connectivity may contribute to the pathological basis of OCD.
Epidemiologic research has increasingly acknowledged the importance of developmental origins of health and disease (DOHaD) and suggests that prior exposures can be transferred across generations. Multigenerational cohorts are crucial to verify the intergenerational inheritance among human subjects. We carried out this scoping review aims to summarize multigenerational cohort studies’ characteristics, issues, and implications and hence provide evidence to the DOHaD and intergenerational inheritance. We adopted a comprehensive search strategy to identify multigenerational cohorts, searching PubMed, EMBASE, and Web of Science databases from the inception of each dataset to June 20th, 2022, to retrieve relevant articles. After screening, 28 unique multigenerational cohort studies were identified. We classified all studies into four types: population-based cohort extended three-generation cohort, birth cohort extended three-generation cohort, three-generation cohort, and integrated birth and three-generation cohort. Most cohorts (n = 15, 53%) were categorized as birth cohort extended three-generation studies. The sample size of included cohorts varied from 41 to 167,729. The study duration ranged from two years to 31 years. Most cohorts had common exposures, including socioeconomic factors, lifestyle, and grandparents’ and parents’ health and risk behaviors over the life course. These studies usually investigated intergenerational inheritance of diseases as the outcomes, most frequently, obesity, child health, and cardiovascular diseases. We also found that most multigenerational studies aim to disentangle genetic, lifestyle, and environmental contributions to the DOHaD across generations. We call for more research on large multigenerational well-characterized cohorts, up to four or even more generations, and more studies from low- and middle-income countries.
Todorokite is a common Mn oxide (with a tunnel structure) in the Earth surface environment, and can be obtained by hydrothermal treatment or refluxing process from precursor buserite with a layered structure. Several chemical reaction conditions for the phase transformation from Na-buserite to todorokite at atmospheric pressure were investigated, including temperature, pH, crystallinity of precursor Na-buserite, the amount of the interlayer Mg2+ of the Mg-buserite and clay minerals. The results showed that the conversion rate and crystallinity of todorokite decreased with falling temperature, and Mg-buserite could not be completely transformed to todorokite at lower temperatures (40°C). The poorly crystalline Na-buserite could be converted into todorokite more easily than highly crystalline Na-buserite. Todorokite can be prepared at pH 5–9, but the rate of conversion and crystallinity of todorokite did vary with pH in the order: neutral ≈ alkali > acidic. The conversion rate of todorokite decreased with decreasing interlayer Mg2+ content of the Mg-buserite. The presence of montmorillonite or goethite slowed the formation reaction of todorokite in the refluxing process, and the reaction time was prolonged when the amounts of those minerals were increased.
With the development of high-power microwave technology, the output power of the pulse generator is required more and more higher. In this paper, it is realized by increasing the output power of the module while the output impedance of the module changes little. The module of the generator is based on pulse forming network (PFN) and linear transformer (LT). Four Blumlein PFNs with arc-type configuration and 24 Ω characteristic impedance were connected symmetrically to the primary coil of the LTD and driven by two identical laser triggered spark switches to ensure four Blumlein PFNs synchronizing operation. On this basis, a two-stage high-power pulse generator based on PFN-LT is developed. The following technical parameters of the generator were achieved on a 12 Ω high-power solid resistor: output voltage amplitude of ∼250 kV and output power of ∼5.2 GW at a repetition rate of 5 Hz.
To evaluate the mental health of paediatric cochlear implant users and analyse the relationship between six dimensions (movements, cognitive ability, emotion and will, sociality, living habits and language) and hearing and speech rehabilitation.
Methods
Eighty-two cochlear implant users were assessed using the Mental Health Survey Questionnaire. Age at implantation, time of implant use and listening modes were investigated. Categories of Auditory Performance and the Speech Intelligibility Rating Scale were used to score hearing and speech abilities.
Results
More recipients scored lower in cognitive ability and language. Age at implantation was statistically significant (p < 0.05) for movements, cognitive ability, emotion and will, and language. The time of implant usage and listening mode indicated statistical significance (p < 0.05) in cognitive ability, sociality and language.
Conclusion
Timely attention should be paid to the mental health of paediatric cochlear implant users, and corresponding psychological interventions should be implemented to make personalised rehabilitation plans.
In this study, the length scaling for the boundary layer separation induced by two incident shock waves is experimentally and analytically investigated. The experiments are performed in a Mach 2.73 flow. A double-wedge shock generator with two deflection angles ($\alpha _1$ and $\alpha _2$) is employed to generate two incident shock waves. Two deflection angle combinations with an identical total deflection angle are adopted: ($\alpha _1 = 7^\circ$, $\alpha _2 = 5^\circ$) and ($\alpha _1 = 5^\circ$, $\alpha _2 = 7^\circ$). For each deflection angle combination, the flow features of the dual-incident shock wave–turbulent boundary layer interactions (dual-ISWTBLIs) under five shock wave distance conditions are examined via schlieren photography, wall-pressure measurements and surface oil-flow visualisation. The experimental results show that the separation point moves downstream with increasing shock wave distance ($d$). For the dual-ISWTBLIs exhibiting a coupling separation state, the upstream interaction length ($L_{int}$) of the separation region approximately linearly decreases with increasing $d$, and the decrease rate of $L_{int}$ with $d$ increases with the second deflection angle under the condition of an identical total deflection angle. Based on control volume analysis of mass and momentum conservations, the relation between $L_{int}$ and $d$ is analytically determined to be approximately linear for the dual-ISWTBLIs with a coupling separation region, and the slope of the linear relation obtained analytically agrees well with that obtained experimentally. Furthermore, a prediction method for $L_{int}$ of the dual-ISWTBLIs with a coupling separation region is proposed, and the relative error of the predicted $L_{int}$ in comparison with the experimental result is $\sim$10 %.
Objectives: Carbapenemase-producing carbapenem-resistant Enterobacteriaceae (CP-CRE) are nosocomial pathogens, and control of CP-CRE transmission is one of the most important infection control issues healthcare organizations face today. Increasing colonization acquisition and clinical infections of CP-CRE occurred in our institution in 2019. In this observational study, we monitored CP-CRE acquisition following implementation of multimodal control measures, and we describe the impact of this intervention on clinical infections. Methods: Increased hospital-acquired CP-CRE colonization and clinical infections were observed in early 2019. Increased CP-CRE surveillance was implemented to include CP-CRE contacts, patients with lengths of stay >7 days, patients with a recent history of hospitalization in other hospitals, and renal dialysis patients. The following interventions were also implemented: (1) isolation or placing CP-CRE patients in cohorts in a designated multidrug-resistant organism (MDRO) ward; (2) emphasis on hand hygiene and contact precautions; (3) mandatory use of gown and gloves for predefined ‘high-risk’ nursing activities, including diaper changing, toilet assistance, wound dressing, and handling urine or stool; (4) enhanced environmental and equipment cleaning; (5) regular audit and feedback regarding compliance; and (6) weekly feedback on ward-level CP-CRE acquisition. CP-CRE colonization cases and clinical infections were tracked by infection prevention and control nurses. Results: The hospital-acquired CP-CRE colonization rate was 4.39 per 10,000 patient days in 2019; it decreased slightly to 3.61 in 2020 and remained steady at 3.77 in 2021. The predominant CP-CRE genes were NDM, OXA-48–like, and KPC. There were 12 hospital-acquired CP-CRE infections in 2019, a rate of 0.37 per 10,000 patient days. This incidence decreased to 6 infections in 2020 and 3 infections in 2021, with corresponding infection rates of 0.19 and 0.09 per 10,000 patient days, respectively. Conclusions: Control of CP-CRE remains extremely challenging in hospitals with multibed open wards. A bundle approach to infection control showed a gradual reduction in CP-CRE cases, with a significant impact on the prevention of clinical infections.
Objectives: Patients undergoing hemodialysis using a catheter are at significant risk of developing central venous catheter–related bloodstream infections (CRBSIs), especially with methicillin-resistant Staphylococcus aureus (MRSA), resulting in increased morbidity, mortality, and cost. In our 1,000-bed regional hospital, the average CRBSI (any bacteria) rate in patients dialyzing via dialysis catheters was 1.44 per 1,000 catheter days, and the average CRBSI (MRSA) rate was 0.56 per 1,000 catheter days. A quality improvement project was initiated to reduce the overall dialysis CRBSI and CRBSI-MRSA by 50%. Methods: Following the formation of a multidisciplinary team, the catheter-insertion protocols and catheter-care protocols were standardized throughout the hospital. We adopted a well-established scientific quality improvement method, plan–do–study–act (PDSA) cycle model for all interventions that were implemented. The patients and general ward nursing staff were provided education and training in dialysis catheter care. Results: The project was initiated in January 2016, and the initial improvement was seen from July 2017 onward. Analysis of the data since 2016 showed a steady improvement in the overall CRBSI rates, as well as CRBSI-MRSA rates. The average CRBSI rate improved to 0.76 per 1,000 catheter days, and the average CRBSI-MRSA rates improved to 0.15 per 100 catheter days in the calendar year 2021. Conclusions: Because the causes of these infections are multifactorial, emphasis should be placed on improving care processes from the patient preparation phase prior to catheter insertion to regular catheter care in the inpatient wards and dialysis units. We attribute the success of our project to involving all stakeholders and obtaining constant feedback from the staff. We successfully applied PDSA cycles to make relevant incremental changes.
We present experimental results of irregular long-crested waves propagating over a submerged trapezoidal bar with the presence of a background current in a wave flume. We investigate the non-equilibrium phenomenon (NEP) induced by significant changes of water depth and mean horizontal flow velocity as wave trains pass over the bar. Using skewness and kurtosis as proxies, we show evidence that an accelerating following current could increase the sea-state non-Gaussianity and enhance both the magnitude and spatial extent of the NEP. We also find that below a ‘saturation relative water depth’ $k_p h_2 \approx 0.5$ ($k_p$ being the peak wavenumber in the shallow area of depth $h_2$), although the NEP manifests, the decrease of the relative water depth does not further enhance the maximum skewness and kurtosis over the bar crest. This work highlights the nonlinear physics according to which a following current could provoke higher freak wave risk in coastal areas where modulation instability plays an insignificant role.
A pulsed fast neutron source is critical for applications of fast neutron resonance radiography and fast neutron absorption spectroscopy. However, due to the large transversal source size (of the order of mm) and long pulse duration (of the order of ns) of traditional pulsed fast neutron sources, it is difficult to realize high-contrast neutron imaging with high spatial resolution and a fine absorption spectrum. Here, we experimentally present a micro-size ultra-short pulsed neutron source by a table-top laser–plasma wakefield electron accelerator driving a photofission reaction in a thin metal converter. A fast neutron source with source size of approximately 500 μm and duration of approximately 36 ps has been driven by a tens of MeV, collimated, micro-size electron beam via a hundred TW laser facility. This micro-size ultra-short pulsed neutron source has the potential to improve the energy resolution of a fast neutron absorption spectrum dozens of times to, for example, approximately 100 eV at 1.65 MeV, which could be of benefit for high-quality fast neutron imaging and deep understanding of the theoretical model of neutron physics.
A welding path can be planned effectively for spot welding robots using the ant colony algorithm, but the initial parameters of the ant colony algorithm are usually selected through human experience, resulting in an unreasonable planned path. This paper combines the ant colony algorithm with the particle swarm algorithm and uses the particle swarm algorithm to train the initial parameters of the ant colony algorithm to plan an optimal path. Firstly, a mathematical model for spot welding path planning is established using the ant colony algorithm. Then, the particle swarm algorithm is introduced into the ant colony algorithm to find the optimal combination of parameters by treating the initial parameters $\alpha$ and $\beta$ of the ant colony algorithm and as two-dimensional coordinates in the particle swarm algorithm. Finally, the simulation analysis was carried out using MATLAB to obtain the paths of the improved ant colony algorithm for six different sets of parameters with an average path length of 10,357.7509 mm, but the average path length obtained by conventional algorithm was 10,830.8394 mm. Convergence analysis of the improved ant colony algorithm showed that the average number of iterations was 17. Therefore, the improved ant colony algorithm has higher solution quality and converges faster.
Mycoplasma genitalium (MG) and Chlamydia trachomatis (CT) are the most common sexually transmitted pathogens, which can cause cervicitis, pelvic inflammation and infertility in female. In the present study, we collected the basic information, clinical results of leucorrhoea and human papillomavirus (HPV) infection of patients, who were involved in both MG and CT RNA detection in West China Second Hospital of Sichuan University from January 2019 to April 2021, ranging from 18 to 50 years old. The results showed that the infection frequencies of MG and CT were 2.6% and 6.5%, respectively. The infection rate of CT in gynaecological patients was significantly higher than that of MG (P < 0.001). Moreover, patients with CT infection often had symptoms of gynaecological diseases, while patients with MG infection remain often asymptomatic. By exploring the connection between MG or CT infection and vaginal secretions, we found that the infection of MG or CT promoted to the increase of vaginal leukocytes, and CT infection exacerbated the decrease of the number of Lactobacillus in the vagina. Further analysis suggested that independent infection and co-infection of MG or CT resulted in abnormal vaginal secretion, affecting the stability of vaginal environment, which may induce vaginal diseases. Unexpectedly, our study found no association between MG or CT infection and high-risk HPV infection. In conclusion, our study explored the infection of MG and CT among women in Southwest China for the first time, and revealed that the infection of MG or CT would affect the homeostasis of vaginal environment, which laid a foundation for the clinical diagnosis and treatment of MG and CT infection.
Moving away from the text-centered paradigm in film studies, the present research explores the relationship between the growing popularity of the film in Shanghai during the first two decades of the twentieth century and city governance in the International Settlement. It argues that the rise of movie halls contributed to creating a new kind of crowd that blended Chinese moviegoers with non-Chinese viewers. The emergence of the cinema as a space where people of different racial and ethnic origins encountered impelled the Shanghai Municipal Council – the governing body of the International Settlement in Shanghai – to respond by implementing new measures of public safety and altering its decades-long unspoken rules of segregation in the realm of everyday life. For Chinese enlightenment intellectuals and government officials, meanwhile, anxiety over their fellow Chinese's lack of basic decorum in public spaces arose with the intense intermingling of Chinese and non-Chinese filmgoers under the same roof. Thus, the cinema became a “contact zone” – a space of asymmetrical relations resulting not necessarily from colonists' exercise of colonial power but from the Chinese elite's wrapping of the discussion of movie theater etiquette reform within a political and ideological framework of modernization, patriotism, and anti-imperialism.
Assessing conditional tail risk at very high or low levels is of great interest in numerous applications. Due to data sparsity in high tails, the widely used quantile regression method can suffer from high variability at the tails, especially for heavy-tailed distributions. As an alternative to quantile regression, expectile regression, which relies on the minimization of the asymmetric l2-norm and is more sensitive to the magnitudes of extreme losses than quantile regression, is considered. In this article, we develop a new estimation method for high conditional tail risk by first estimating the intermediate conditional expectiles in regression framework, and then estimating the underlying tail index via weighted combinations of the top order conditional expectiles. The resulting conditional tail index estimators are then used as the basis for extrapolating these intermediate conditional expectiles to high tails based on reasonable assumptions on tail behaviors. Finally, we use these high conditional tail expectiles to estimate alternative risk measures such as the Value at Risk (VaR) and Expected Shortfall (ES), both in high tails. The asymptotic properties of the proposed estimators are investigated. Simulation studies and real data analysis show that the proposed method outperforms alternative approaches.
We demonstrate an all-optical method for controlling the transverse motion of an ionization injected electron beam in a laser plasma accelerator by using the transversely asymmetrical plasma wakefield. The laser focus shape can control the distribution of a transversal wakefield. When the laser focus shape is changed from circular to slanted elliptical in the experiment, the electron beam profiles change from an ellipse to three typical shapes. The three-dimensional particle-in-cell simulation result agrees well with the experiment, and it shows that the trajectories of these accelerated electrons change from undulating to helical. Such an all-optical method could be useful for convenient control of the transverse motion of an electron beam, which results in synchrotron radiation from orbit angular momentum.
The present study aims to investigate the effect of wholegrain and legume consumption on the incidence of age-related cataract in an older Australian population-based cohort. The Blue Mountains Eye Study (BMES) is a population-based cohort study of eye diseases among older adults aged 49 years or older (1992–1994, n 3654). Of 2334 participants of the second examination of the BMES (BMES 2, 1997–2000), 1541 (78·3 % of survivors) were examined 5 years later (BMES 3) who had wholegrain and legume consumption estimated from the FFQ at BMES 2. Cataract was assessed using photographs taken during examinations following the Wisconsin cataract grading system. Multivariable-adjusted logistic regression models were used to assess associations with the 5-year incidence of cataract from BMES 2 (baseline) to BMES 3. The 5-year incidence of cortical, nuclear and posterior subcapsular (PSC) cataract was 18·2, 16·5 and 5·9 %, respectively. After adjustment for age, sex and other factors, total wholegrain consumption at baseline was not associated with incidence of any type of cataract. High consumption of legumes showed a protective association for incident PSC cataract (5th quintile: adjusted OR 0·37; 95 % CI 0·15, 0·92). There was no significant trend of this association across quintiles (P = 0·08). In this older Australian population, we found no associations between wholegrain intake at baseline and the 5-year incidence of three cataract types. However, intake of legumes in the highest quintile, compared with the lowest quintile, may protect against PSC formation, a finding needing replication in other studies.