We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The First Large Absorption Survey in H i (FLASH) is a large-area radio survey for neutral hydrogen in and around galaxies in the intermediate redshift range $0.4\lt z\lt1.0$, using the 21-cm H i absorption line as a probe of cold neutral gas. The survey uses the ASKAP radio telescope and will cover 24,000 deg$^2$ of sky over the next five years. FLASH breaks new ground in two ways – it is the first large H i absorption survey to be carried out without any optical preselection of targets, and we use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. Two Pilot Surveys, covering around 3000 deg$^2$ of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data products from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are public and available online. In this paper, we describe the FLASH spectral-line and continuum data products and discuss the quality of the H i spectra and the completeness of our automated line search. Finally, we present a set of 30 new H i absorption lines that were robustly detected in the Pilot Surveys, almost doubling the number of known H i absorption systems at $0.4\lt z\lt1$. The detected lines span a wide range in H i optical depth, including three lines with a peak optical depth $\tau\gt1$, and appear to be a mixture of intervening and associated systems. Interestingly, around two-thirds of the lines found in this untargeted sample are detected against sources with a peaked-spectrum radio continuum, which are only a minor (5–20%) fraction of the overall radio-source population. The detection rate for H i absorption lines in the Pilot Surveys (0.3 to 0.5 lines per 40 deg$^2$ ASKAP field) is a factor of two below the expected value. One possible reason for this is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper in this series will discuss the host galaxies of the H i absorption systems identified here.
In response to the COVID-19 pandemic, we rapidly implemented a plasma coordination center, within two months, to support transfusion for two outpatient randomized controlled trials. The center design was based on an investigational drug services model and a Food and Drug Administration-compliant database to manage blood product inventory and trial safety.
Methods:
A core investigational team adapted a cloud-based platform to randomize patient assignments and track inventory distribution of control plasma and high-titer COVID-19 convalescent plasma of different blood groups from 29 donor collection centers directly to blood banks serving 26 transfusion sites.
Results:
We performed 1,351 transfusions in 16 months. The transparency of the digital inventory at each site was critical to facilitate qualification, randomization, and overnight shipments of blood group-compatible plasma for transfusions into trial participants. While inventory challenges were heightened with COVID-19 convalescent plasma, the cloud-based system, and the flexible approach of the plasma coordination center staff across the blood bank network enabled decentralized procurement and distribution of investigational products to maintain inventory thresholds and overcome local supply chain restraints at the sites.
Conclusion:
The rapid creation of a plasma coordination center for outpatient transfusions is infrequent in the academic setting. Distributing more than 3,100 plasma units to blood banks charged with managing investigational inventory across the U.S. in a decentralized manner posed operational and regulatory challenges while providing opportunities for the plasma coordination center to contribute to research of global importance. This program can serve as a template in subsequent public health emergencies.
Childhood bullying is a public health priority. We evaluated the effectiveness and costs of KiVa, a whole-school anti-bullying program that targets the peer context.
Methods
A two-arm pragmatic multicenter cluster randomized controlled trial with embedded economic evaluation. Schools were randomized to KiVa-intervention or usual practice (UP), stratified on school size and Free School Meals eligibility. KiVa was delivered by trained teachers across one school year. Follow-up was at 12 months post randomization. Primary outcome: student-reported bullying-victimization; secondary outcomes: self-reported bullying-perpetration, participant roles in bullying, empathy and teacher-reported Strengths and Difficulties Questionnaire. Outcomes were analyzed using multilevel linear and logistic regression models.
Findings
Between 8/11/2019–12/02/2021, 118 primary schools were recruited in four trial sites, 11 111 students in primary analysis (KiVa-intervention: n = 5944; 49.6% female; UP: n = 5167, 49.0% female). At baseline, 21.6% of students reported being bullied in the UP group and 20.3% in the KiVa-intervention group, reducing to 20.7% in the UP group and 17.7% in the KiVa-intervention group at follow-up (odds ratio 0.87; 95% confidence interval 0.78 to 0.97, p value = 0.009). Students in the KiVa group had significantly higher empathy and reduced peer problems. We found no differences in bullying perpetration, school wellbeing, emotional or behavioral problems. A priori subgroup analyses revealed no differences in effectiveness by socioeconomic gradient, or by gender. KiVa costs £20.78 more per pupil than usual practice in the first year, and £1.65 more per pupil in subsequent years.
Interpretation
The KiVa anti-bullying program is effective at reducing bullying victimization with small-moderate effects of public health importance.
Funding
The study was funded by the UK National Institute for Health and Care Research (NIHR) Public Health Research program (17-92-11). Intervention costs were funded by the Rayne Foundation, GwE North Wales Regional School Improvement Service, Children's Services, Devon County Council and HSBC Global Services (UK) Ltd.
When two fluid drops touch, they coalesce due to surface tension. At early times, there is only a relatively small fluid bridge joining the drops. An asymptotic solution is presented for an inertial regime of early-time coalescence, in which inertial forces balance surface tension at leading order. It is demonstrated that viscosity nevertheless has a leading-order effect. Radial momentum is created at the tightly curved edge of the fluid bridge by the net force $2\gamma$ (per unit length) due to surface tension. This momentum is left behind the radially expanding bridge edge in a thin viscous wake. The divergent volume flux in the wake entrains fluid from above and below the bridge, and drives an inviscid irrotational flow in the drops on the scale of the bridge radius. This flow widens the gap between the drops ahead of the bridge, and the larger gap width results in a lower rate of coalescence. Including viscosity in this way improves the agreement between theory and the available experimental and numerical data.
Recent research has shown the potential of speleothem δ13C to record a range of environmental processes. Here, we report on 230Th-dated stalagmite δ13C records for southwest Sulawesi, Indonesia, over the last 40,000 yr to investigate the relationship between tropical vegetation productivity and atmospheric methane concentrations. We demonstrate that the Sulawesi stalagmite δ13C record is driven by changes in vegetation productivity and soil respiration and explore the link between soil respiration and tropical methane emissions using HadCM3 and the Sheffield Dynamic Global Vegetation Model. The model indicates that changes in soil respiration are primarily driven by changes in temperature and CO2, in line with our interpretation of stalagmite δ13C. In turn, modelled methane emissions are driven by soil respiration, providing a mechanism that links methane to stalagmite δ13C. This relationship is particularly strong during the last glaciation, indicating a key role for the tropics in controlling atmospheric methane when emissions from high-latitude boreal wetlands were suppressed. With further investigation, the link between δ13C in stalagmites and tropical methane could provide a low-latitude proxy complementary to polar ice core records to improve our understanding of the glacial–interglacial methane budget.
The IntCal family of radiocarbon (14C) calibration curves is based on research spanning more than three decades. The IntCal group have collated the 14C and calendar age data (mostly derived from primary publications with other types of data and meta-data) and, since 2010, made them available for other sorts of analysis through an open-access database. This has ensured transparency in terms of the data used in the construction of the ratified calibration curves. As the IntCal database expands, work is underway to facilitate best practice for new data submissions, make more of the associated metadata available in a structured form, and help those wishing to process the data with programming languages such as R, Python, and MATLAB. The data and metadata are complex because of the range of different types of archives. A restructured interface, based on the “IntChron” open-access data model, includes tools which allow the data to be plotted and compared without the need for export. The intention is to include complementary information which can be used alongside the main 14C series to provide new insights into the global carbon cycle, as well as facilitating access to the data for other research applications. Overall, this work aims to streamline the generation of new calibration curves.
When two small fluid drops are sufficiently close, the van der Waals force overcomes surface tension and deforms the surfaces into contact, initiating coalescence. The dynamics of surface deformation across an inviscid gap falls into two distinct regimes (Stokes and inertial–viscous) characterized by the forces that balance the van der Waals attraction at leading order (viscosity, and both inertia and viscosity). The previously studied Stokes regime holds for very viscous drops but fails for less viscous drops as inertia becomes significant before contact is reached. We show that the subsequent inertial–viscous dynamics is self-similar as contact is approached, with the gap width decreasing as $t{'^{3/8}}$ and the radial scale of the deformed region decreasing as $t{'^{1/2}}$ as $t{'}\to 0$, for time until contact $t'$. The self-similar behaviour is universal and is the generic asymptotic behaviour observed in time-dependent simulations. The unique self-similar gap profile of the inertial–viscous regime suggests new initial conditions for the coalescence of the drops after contact.
Retrospective self-report is typically used for diagnosing previous pediatric traumatic brain injury (TBI). A new semi-structured interview instrument (New Mexico Assessment of Pediatric TBI; NewMAP TBI) investigated test–retest reliability for TBI characteristics in both the TBI that qualified for study inclusion and for lifetime history of TBI.
Method:
One-hundred and eight-four mTBI (aged 8–18), 156 matched healthy controls (HC), and their parents completed the NewMAP TBI within 11 days (subacute; SA) and 4 months (early chronic; EC) of injury, with a subset returning at 1 year (late chronic; LC).
Results:
The test–retest reliability of common TBI characteristics [loss of consciousness (LOC), post-traumatic amnesia (PTA), retrograde amnesia, confusion/disorientation] and post-concussion symptoms (PCS) were examined across study visits. Aside from PTA, binary reporting (present/absent) for all TBI characteristics exhibited acceptable (≥0.60) test–retest reliability for both Qualifying and Remote TBIs across all three visits. In contrast, reliability for continuous data (exact duration) was generally unacceptable, with LOC and PCS meeting acceptable criteria at only half of the assessments. Transforming continuous self-report ratings into discrete categories based on injury severity resulted in acceptable reliability. Reliability was not strongly affected by the parent completing the NewMAP TBI.
Conclusions:
Categorical reporting of TBI characteristics in children and adolescents can aid clinicians in retrospectively obtaining reliable estimates of TBI severity up to a year post-injury. However, test–retest reliability is strongly impacted by the initial data distribution, selected statistical methods, and potentially by patient difficulty in distinguishing among conceptually similar medical concepts (i.e., PTA vs. confusion).
The Subglacial Antarctic Lakes Scientific Access (SALSA) Project accessed Mercer Subglacial Lake using environmentally clean hot-water drilling to examine interactions among ice, water, sediment, rock, microbes and carbon reservoirs within the lake water column and underlying sediments. A ~0.4 m diameter borehole was melted through 1087 m of ice and maintained over ~10 days, allowing observation of ice properties and collection of water and sediment with various tools. Over this period, SALSA collected: 60 L of lake water and 10 L of deep borehole water; microbes >0.2 μm in diameter from in situ filtration of ~100 L of lake water; 10 multicores 0.32–0.49 m long; 1.0 and 1.76 m long gravity cores; three conductivity–temperature–depth profiles of borehole and lake water; five discrete depth current meter measurements in the lake and images of ice, the lake water–ice interface and lake sediments. Temperature and conductivity data showed the hydrodynamic character of water mixing between the borehole and lake after entry. Models simulating melting of the ~6 m thick basal accreted ice layer imply that debris fall-out through the ~15 m water column to the lake sediments from borehole melting had little effect on the stratigraphy of surficial sediment cores.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with $\sim$ 15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination $+41^\circ$ made over a 288-MHz band centred at 887.5 MHz.
The global community needs to be aware of the potential psychosocial consequences that may be experienced by health care workers who are actively managing patients with coronavirus disease (COVID-19). These health care workers are at increased risk for experiencing mood and trauma-related disorders, including posttraumatic stress disorder (PTSD). In this concept article, strategies are recommended for individual health care workers and hospital leadership to aid in mitigating the risk of PTSD, as well as to build resilience in light of a potential second surge of COVID-19.
Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
We describe an ultra-wide-bandwidth, low-frequency receiver recently installed on the Parkes radio telescope. The receiver system provides continuous frequency coverage from 704 to 4032 MHz. For much of the band (${\sim}60\%$), the system temperature is approximately 22 K and the receiver system remains in a linear regime even in the presence of strong mobile phone transmissions. We discuss the scientific and technical aspects of the new receiver, including its astronomical objectives, as well as the feed, receiver, digitiser, and signal processor design. We describe the pipeline routines that form the archive-ready data products and how those data files can be accessed from the archives. The system performance is quantified, including the system noise and linearity, beam shape, antenna efficiency, polarisation calibration, and timing stability.
The rocky shores of the north-east Atlantic have been long studied. Our focus is from Gibraltar to Norway plus the Azores and Iceland. Phylogeographic processes shape biogeographic patterns of biodiversity. Long-term and broadscale studies have shown the responses of biota to past climate fluctuations and more recent anthropogenic climate change. Inter- and intra-specific species interactions along sharp local environmental gradients shape distributions and community structure and hence ecosystem functioning. Shifts in domination by fucoids in shelter to barnacles/mussels in exposure are mediated by grazing by patellid limpets. Further south fucoids become increasingly rare, with species disappearing or restricted to estuarine refuges, caused by greater desiccation and grazing pressure. Mesoscale processes influence bottom-up nutrient forcing and larval supply, hence affecting species abundance and distribution, and can be proximate factors setting range edges (e.g., the English Channel, the Iberian Peninsula). Impacts of invasive non-native species are reviewed. Knowledge gaps such as the work on rockpools and host–parasite dynamics are also outlined.
The Psychiatric Genomics Consortium (PGC) has made major advances in the molecular etiology of MDD, confirming that MDD is highly polygenic. Pathway enrichment results from PGC meta-analyses can also be used to help inform molecular drug targets. Prior to any knowledge of molecular biomarkers for MDD, drugs targeting molecular pathways (MPs) proved successful in treating MDD. It is possible that examining polygenicity within specific MPs implicated in MDD can further refine molecular drug targets.
Methods
Using a large case–control GWAS based on low-coverage whole genome sequencing (N = 10 640) in Han Chinese women, we derived polygenic risk scores (PRS) for MDD and for MDD specific to each of over 300 MPs previously shown to be relevant to psychiatric diagnoses. We then identified sets of PRSs, accounting for critical covariates, significantly predictive of case status.
Results
Over and above global MDD polygenic risk, polygenic risk within the GO: 0017144 drug metabolism pathway significantly predicted recurrent depression after multiple testing correction. Secondary transcriptomic analysis suggests that among genes in this pathway, CYP2C19 (family of Cytochrome P450) and CBR1 (Carbonyl Reductase 1) might be most relevant to MDD. Within the cases, pathway-based risk was additionally associated with age at onset of MDD.
Conclusions
Results indicate that pathway-based risk might inform etiology of recurrent major depression. Future research should examine whether polygenicity of the drug metabolism gene pathway has any association with clinical presentation or treatment response. We discuss limitations to the generalizability of these preliminary findings, and urge replication in future research.