We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Brown dwarfs are failed stars with very low mass (13–75 Jupiter mass) and an effective temperature lower than 2 500 K. Their mass range is between Jupiter and red dwarfs. Thus, they play a key role in understanding the gap in the mass function between stars and planets. However, due to their faint nature, previous searches are inevitably limited to the solar neighbourhood (20 pc). To improve our knowledge of the low mass part of the initial stellar mass function and the star formation history of the Milky Way, it is crucial to find more distant brown dwarfs. Using James Webb Space Telescope (JWST) COSMOS-Web data, this study seeks to enhance our comprehension of the physical characteristics of brown dwarfs situated at a distance of kpc scale. The exceptional sensitivity of the JWST enables the detection of brown dwarfs that are up to 100 times more distant than those discovered in the earlier all-sky infrared surveys. The large area coverage of the JWST COSMOS-Web survey allows us to find more distant brown dwarfs than earlier JWST studies with smaller area coverages. To capture prominent water absorption features around 2.7 ${\unicode{x03BC}}$m, we apply two colour criteria, $\text{F115W}-\text{F277W}+1\lt\text{F277W}-\text{F444W}$ and $\text{F277W}-\text{F444W}\gt\,0.9$. We then select point sources by CLASS_STAR, FLUX_RADIUS, and SPREAD_MODEL criteria. Faint sources are visually checked to exclude possibly extended sources. We conduct SED fitting and MCMC simulations to determine their physical properties and associated uncertainties. Our search reveals 25 T-dwarf candidates and 2 Y-dwarf candidates, more than any previous JWST brown dwarf searches. They are located from 0.3 to 4 kpc away from the Earth. The spatial number density of 900–1 050 K dwarf is $(2.0\pm0.9) \times10^{-6}\text{ pc}^{-3}$, 1 050–1 200 K dwarf is $(1.2\pm0.7) \times10^{-6}\text{ pc}^{-3}$, and 1 200–1 350 K dwarf is $(4.4\pm1.3) \times10^{-6}\text{ pc}^{-3}$. The cumulative number count of our brown dwarf candidates is consistent with the prediction from a standard double exponential model. Three of our brown dwarf candidates were detected by HST, with transverse velocities $12\pm5$, $12\pm4$, and $17\pm6$ km s$^{-1}$. Along with earlier studies, the JWST has opened a new window of brown dwarf research in the Milky Way thick disk and halo.
While early intervention in psychosis (EIP) programs have been increasingly implemented across the globe, many initiatives from Africa, Asia and Latin America are not widely known. The aims of the current review are (a) to describe population-based and small-scale, single-site EIP programs in Africa, Asia and Latin America, (b) to examine the variability between programs located in low-and-middle income (LMIC) and high-income countries in similar regions and (c) to outline some of the challenges and provide recommendations to overcome existing obstacles.
Methods
EIP programs in Africa, Asia and Latin America were identified through experts from the different target regions. We performed a systematic search in Medline, Embase, APA PsycInfo, Web of Science and Scopus up to February 6, 2024.
Results
Most EIP programs in these continents are small-scale, single-site programs that serve a limited section of the population. Population-based programs with widespread coverage and programs integrated into primary health care are rare. In Africa, EIP programs are virtually absent. Mainland China is one of the only LMICs that has begun to take steps toward developing a population-based EIP program. High-income Asian countries (e.g. Hong Kong and Singapore) have well-developed, comprehensive programs for individuals with early psychosis, while others with similar economies (e.g. South Korea and Japan) do not. In Latin America, Chile is the only country in the process of providing population-based EIP care.
Conclusions
Financial resources and integration in mental health care, as well as the availability of epidemiological data on psychosis, impact the implementation of EIP programs. Given the major treatment gap of early psychosis in Africa, Latin America and large parts of Asia, publicly funded, locally-led and accessible community-based EIP care provision is urgently needed.
This study presents observations of coherent modes (CMs) in a spherical tokamak using a microwave interferometer near the midplane. The CMs within the 30–60 kHz frequency range were observed during electron cyclotron resonance heating only, and the frequency of the CMs increased proportionally with the square root of the electron temperature near $R = 0.7m$. Generally, these modes displayed bursting and chirping signatures with strong density rise and fall. Their appearance indicated an increase in the intensity of hard x rays, suggesting a deterioration in energetic electron confinement. Furthermore, the effect of CMs on the intensity of energetic electron-driven whistler waves was observed. They decreased when CMs were present and gradually increased with the decrease in CM intensity. The CMs may influence the intensity of whistler waves by affecting the energetic electron confinement.
Social determinants of health (SDoH), such as socioeconomics and neighborhoods, strongly influence health outcomes. However, the current state of standardized SDoH data in electronic health records (EHRs) is lacking, a significant barrier to research and care quality.
Methods:
We conducted a PubMed search using “SDOH” and “EHR” Medical Subject Headings terms, analyzing included articles across five domains: 1) SDoH screening and assessment approaches, 2) SDoH data collection and documentation, 3) Use of natural language processing (NLP) for extracting SDoH, 4) SDoH data and health outcomes, and 5) SDoH-driven interventions.
Results:
Of 685 articles identified, 324 underwent full review. Key findings include implementation of tailored screening instruments, census and claims data linkage for contextual SDoH profiles, NLP systems extracting SDoH from notes, associations between SDoH and healthcare utilization and chronic disease control, and integrated care management programs. However, variability across data sources, tools, and outcomes underscores the need for standardization.
Discussion:
Despite progress in identifying patient social needs, further development of standards, predictive models, and coordinated interventions is critical for SDoH-EHR integration. Additional database searches could strengthen this scoping review. Ultimately, widespread capture, analysis, and translation of multidimensional SDoH data into clinical care is essential for promoting health equity.
Adolescence is a period marked by highest vulnerability to the onset of depression, with profound implications for adult health. Neuroimaging studies have revealed considerable atrophy in brain structure in these patients with depression. Of particular importance are regions responsible for cognitive control, reward, and self-referential processing. However, the causal structural networks underpinning brain region atrophies in adolescents with depression remain unclear.
Objectives
This study aimed to investigate the temporal course and causal relationships of gray matter atrophy within the brains of adolescents with depression.
Methods
We analyzed T1-weighted structural images using voxel-based morphometry in first-episode adolescent patients with depression (n=80, 22 males; age = 15.57±1.78) and age, gender matched healthy controls (n=82, 25 males; age = 16.11±2.76) to identify the disease stage-specific gray matter abnormalities. Then, with granger causality analysis, we arranged the patients’ illness duration chronologically to construct the causal structural covariance networks that investigated the causal relationships of those atypical structures.
Results
Compared to controls, smaller volumes in ventral medial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), middle cingulate cortex (MCC) and insula areas were identified in patients with less than 1 year illness duration, and further progressed to the subgenual ACC, regions of default, frontoparietal networks in longer duration. Causal network results revealed that dACC, vmPFC, MCC and insula were prominent nodes projecting exerted positive causal effects to regions of the default mode and frontoparietal networks. The dACC, vmPFC and insula also had positive projections to the reward network, which included mainly the thalamus, caudate and putamen, while MCC also exerted a positive causal effect on the insula and thalamus.
Conclusions
These findings revealed the progression of structural atrophy in adolescent patients with depression and demonstrated the causal relationships between regions involving cognitive control, reward and self-referential processes.
The occurrence of depression in adolescence, a critical period of brain development, linked with neuroanatomical and cognitive abnormalities. Neuroimaging studies have identified hippocampal abnormalities in those of adolescent patients. However, few studies have investigated the atypically developmental trends in hippocampal subfields in adolescents with depression and their relationships with cognitive dysfunctions.
Objectives
To explore the structural abnormalities of hippocampal subfields in patients with youth depression and examine how these abnormalities associated with cognitive deficits.
Methods
We included a sample of 79 first-episode depressive patients (17 males, age = 15.54±1.83) and 71 healthy controls (23 males, age = 16.18±2.85). The severity of these adolescent patients was assessed by depression scale, suicidal risk and self-harm behavior. Nine cognitive tasks were used to evaluate memory, cognitive control and attention abilities for all participants. Bilateral hippocampus were segmented into 12 subfields with T1 and T2 weighted images using Freesurfer v6.0. A mixed analysis of variance was performed to assess the differences in subfields volumes between all patients and controls, and between patients with mild and severe depression. Finally, LASSO regression was conducted to explore the associations between hippocampal subfields and cognitive abnormalities in patients.
Results
We found significant subfields atrophy in the CA1, CA2/3, CA4, dentate gyrus, hippocampal fissure, hippocampal tail and molecular layer subfields in patients. For those patients with severe depression, hippocampal subfields showed greater extensive atrophy than those in mild, particularly in CA1-4 subfields extending towards the subiculum. These results were similar across various severity assessments. Regression indicated that hippocampal subfields abnormalities had the strongest associations with memory dysfunction, and relatively week associations with cognitive control and attention. Notably, CA4 and dentate gyrus had the highest weights in the regression model.
Conclusions
As depressive severity increases, hippocampal subfield atrophy tends to spread from CA regions to surrounding areas, and primarily affects memory function in patients with youth depression. These results suggest hippocampus might be markers in progression of adolescent depression, offering new directions for early clinical intervention.
Syphilis remains a serious public health problem in mainland China that requires attention, modelling to describe and predict its prevalence patterns can help the government to develop more scientific interventions. The seasonal autoregressive integrated moving average (SARIMA) model, long short-term memory network (LSTM) model, hybrid SARIMA-LSTM model, and hybrid SARIMA-nonlinear auto-regressive models with exogenous inputs (SARIMA-NARX) model were used to simulate the time series data of the syphilis incidence from January 2004 to November 2023 respectively. Compared to the SARIMA, LSTM, and SARIMA-LSTM models, the median absolute deviation (MAD) value of the SARIMA-NARX model decreases by 352.69%, 4.98%, and 3.73%, respectively. The mean absolute percentage error (MAPE) value decreases by 73.7%, 23.46%, and 13.06%, respectively. The root mean square error (RMSE) value decreases by 68.02%, 26.68%, and 23.78%, respectively. The mean absolute error (MAE) value decreases by 70.90%, 23.00%, and 21.80%, respectively. The hybrid SARIMA-NARX and SARIMA-LSTM methods predict syphilis cases more accurately than the basic SARIMA and LSTM methods, so that can be used for governments to develop long-term syphilis prevention and control programs. In addition, the predicted cases still maintain a fairly high level of incidence, so there is an urgent need to develop more comprehensive prevention strategies.
Real-time reverse-transcriptase polymerase chain reaction (RT-PCR) has been the gold standard for diagnosing coronavirus disease 2019 (COVID-19) but has a lag time for the results. An effective prediction algorithm for infectious COVID-19, utilized at the emergency department (ED), may reduce the risk of healthcare-associated COVID-19.
Objective:
To develop a prototypic prediction model for infectious COVID-19 at the time of presentation to the ED.
Material and methods:
Retrospective cohort study of all adult patients admitted to Singapore General Hospital (SGH) through ED between March 15, 2020, and December 31, 2022, with admission of COVID-19 RT-PCR results. Two prediction models were developed and evaluated using area under the curve (AUC) of receiver operating characteristics (ROC) to identify infectious COVID-19 patients (cycle threshold (Ct) of <25).
Results:
Total of 78,687 patients were admitted to SGH through ED during study period. 6,132 of them tested severe acute respiratory coronavirus 2 positive on RT-PCR. Nearly 70% (4,226 of 6,132) of the patients had infectious COVID-19 (Ct<25). Model that included demographics, clinical history, symptom and laboratory variables had AUROC of 0.85 with sensitivity and specificity of 80.0% & 72.1% respectively. When antigen rapid test results at ED were available and added to the model for a subset of the study population, AUROC reached 0.97 with sensitivity and specificity of 95.0% and 92.8% respectively. Both models maintained respective sensitivity and specificity results when applied to validation data.
Conclusion:
Clinical predictive models based on available information at ED can be utilized for identification of infectious COVID-19 patients and may enhance infection prevention efforts.
Gender–sexuality alliances (GSAs) are school-based clubs that provide space for LGBTQ+ youth and their heterosexual cisgender peer allies to socialize, build community, provide social-emotional support, access LGBTQ+-affirming resources, and advocate against discrimination. In this chapter, we review the historical underpinnings of GSAs; their contemporary roles in schools; the ways in which GSAs harness their collective power to advocate and promote social justice for LGBTQ+ people; the ways in which youth experience empowerment through their GSA involvement; and how GSA research can be used by school administrators, GSA advisors, and youth leaders. Finally, we highlight avenues for future research that could further aid GSAs in their aspirations to promote thriving among their members and social justice in their schools.
The interaction between a uniform current with a circular cylinder submerged in a fluid covered by a semi-infinite ice sheet is considered analytically. The ice sheet is modelled as an elastic thin plate, and the fluid flow is described by the linearised velocity potential theory. The Green function or the velocity potential due to a source is first obtained. As the water surface is divided into two semi-infinite parts with different boundary conditions, the Wiener–Hopf method (WHM) offers significant advantages over alternative approaches and is consequently adopted. To do that, the distribution of the roots of the dispersion equation for fluid fully covered by an ice sheet in the complex plane is first analysed systematically, which does not seem to have been done before. The variations of these roots with the Froude number are investigated, especially their effects or factorisation and decomposition required in the WHM. The result is verified by comparing with that obtained from the matched eigenfunction expansion method. Through differentiating the Green function with respect to the source position, the potentials due to multipoles are obtained, which are employed to construct the velocity potential for the circular cylinder. Extensive results are provided for hydrodynamic forces on the cylinder and wave profiles, and some unique features are discussed. In particular, it is found that the forces can be highly oscillatory with the Froude number when the body is below the ice sheet, whereas such an oscillation does not exist when the body is below the free surface.
Specimen samples of Crook County montmorillonite and Silver Hill illite, purified and prepared in the Na-form, were imaged under 80% relative humidity using an atomic force microscope. The direct images showed clearly the hexagonal array of hexagonal rings of oxygen ions expected for the basal planes of 2:1 phyllosilicates. Fourier transformation of the digital information obtained by the microscope scanning tip led to an estimate of 5.1 ± 0.3 Å for the nearest-neighbor separation, in agreement with the ideal nearest-neighbor spacing of 5.4 Å for hexagonal rings as derived from X-ray powder diffraction data. The atomic force microscope should prove to be a useful tool for the molecular-scale resolution of clay mineral surfaces that contain adsorbed macromolecules.
Observer rating scales are necessary to evaluate the risk of suicide because individuals at risk for suicide are often unwilling to seek help on their own. Reliability and validity were evaluated for the newly developed Suicide Screening Questionnaire-Observer Rating (SSQ-OR).
Methods:
Preliminary items were assessed by 251 experts online and 25 questions were selected. 328 individuals at high-risk and 661 controls from 12 Crisis Response Centers and 5 university counseling centers were recruited to complete SSQ-OR, Beck Scale for Suicide Ideation (BSSI) and Patient Health Questionnaire-9 (PHQ-9). In a 6 months follow-up, we reached out to 176 participants to ask whether they had experienced a suicidal thought, plan, or attempt since the baseline assessment. Cronbach's 慣, Mann-Whitney U test, Spearman's correlation, factor analyses, Receiver operating characteristic (ROC) analysis and logistic regression analysis were used to verify the SSQ-OR.
Results:
Structural validity was supported by a two-factor solution using exploratory and confirmatory factor analyses. Excellent model fit indices for the two-factor structure using exploratory factor analysis were confirmed (RMSEA = 0.033, TLI = 0.980, CFI = 0.983). The SSQ-OR demonstrated strong internal consistency. The concurrent validity based on the correlations with other self-reported indicators of suicidal potential-BSSI and PHQ-9- revealed substantial relationships. The high-risk group was effectively characterized by a cut-off point of 4, with a sensitivity of 0.73 and a specificity of 0.79. The SSQ-OR scores were significant predictors of suicidal thoughts and behaviors within 6 months.
Conclusions:
The SSQ-OR exhibits sound psychometric properties, and could be used as a complement to a self-report or clinical-administered scale to screen suicide risk comprehensively.
Birnessite can be used as a precursor in the preparation of manganese oxides. Synthesis of pure birnessite is difficult because of a side reaction, which yields hausmannite. This study aimed to develop a modified oxidation-deprotonation reaction (ODPR) method to eliminate the formation of hausmannite, and to investigate the influence of alkalinity on the synthetic products. In contrast to the conventional synthesis of birnessite through oxygen or permanganate oxidation, the ODPR method can produce birnessite without any impurities, within 5 h, and in a reproducible fashion. The distinctive feature of the ODPR method is the bubbling of N2 gas into NaOH and Mn2+ solutions before mixing the NaOH with Mn2+, in order to keep oxygen away from each solution. As soon as white pyrochroite was formed, oxygen gas was forced in as an oxidant to initiate the oxidation reaction. A black suspension with a blue tint appeared after 5 h of reaction. These precipitates were collected and examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared (IR) and Raman spectroscopy. The average oxidation state of the Mn oxides was also determined. The results showed that pure birnessite with good crystallinity was formed. Oxidation of 1 M NaOH mixed with Mn2+ solution formed random-stacked birnessite. However, the oxidation of 4 M NaOH mixed with Mn2+ formed birnessite. Random-stacked birnessite can be transformed into birnessite by ageing suspensions at 313 to 373 K.
Compact obscured nuclei (CONs) are relatively common in the centers of local (U)LIRGs, yet their nature remains unknown. Both AGN activity and extreme nuclear starbursts have been suggested as plausible nuclear power sources. The prevalence of outflows in these systems suggest that CONs represent a key phase in the nuclear feedback cycle, in which material is ejected from the central regions of the galaxy. Here, we present results from MUSE for the confirmed local CON galaxy NGC4418. For the first time we spatially map the spectral features and kinematics of the galaxy in the optical, revealing several previously unknown structures. In particular, we discover a bilateral outflow along the minor axis, an outflowing bubble, several knot structures and a receding outflow partially obscured by the galactic disk. Based on the properties of these features, we conclude that the CON in NGC4418 is most likely powered by an AGN.
Competition among the two-plasmon decay (TPD) of backscattered light of stimulated Raman scattering (SRS), filamentation of the electron-plasma wave (EPW) and forward side SRS is investigated by two-dimensional particle-in-cell simulations. Our previous work [K. Q. Pan et al., Nucl. Fusion 58, 096035 (2018)] showed that in a plasma with the density near 1/10 of the critical density, the backscattered light would excite the TPD, which results in suppression of the backward SRS. However, this work further shows that when the laser intensity is so high ($>{10}^{16}$ W/cm2) that the backward SRS cannot be totally suppressed, filamentation of the EPW and forward side SRS will be excited. Then the TPD of the backscattered light only occurs in the early stage and is suppressed in the latter stage. Electron distribution functions further show that trapped-particle-modulation instability should be responsible for filamentation of the EPW. This research can promote the understanding of hot-electron generation and SRS saturation in inertial confinement fusion experiments.
To fully comprehend and appreciate the impact of psychosurgery on treatment-resistant depression it is pertinent to review its initial development and subsequent history. By reviewing previous studies of psychosurgery, we can build a narrative of what was, what currently is and what might be. Assessing the complex philosophical dilemma of the mind and the impact this has on individuals’ concept of psychosurgery has helped to bridge the gap between Neurosurgery and Psychiatry.
Objectives
We aimed to examine this question, starting at the very beginnings of our concept of mind, working through to modern-day thinking, how we approach both neurosurgery and psychiatry and help to bridge the two.
Methods
A narrative review of the current literature concerning neurosurgery for mental disorders and said applications to modern psychiatry was conducted. Emphasis on philosophical thought processing in conjunction with the neurosurgical intervention was noted.
Results
Psychosurgery has its roots in the early philosophy of mind, concerned with distinguishing whether the mind is a physical entity or immaterial. Psychosurgery is reliant on a physical concept of the mind, or at the very least that the mind supervenes the physical brain. History has shown us examples of this, with the archetype of this being the story of Phineas Gage. Since its onset psychosurgery has moved in and out of vogue. After being met with early scepticism it later went on to be performed thousands of times to help cure schizophrenia. In the 1800s, Gottlieb Burkhardt pioneered initial surgical interventions on the brain with intended psychiatric outcomes, moving on to work from Egas Moniz and the development of leucotomies and famously lobotomies, to modern medical techniques of Deep Brain Stimulation.
Conclusions
Psychosurgery has faced much opposition throughout history due to the uniquely invasive nature of not just affecting us physically but also mentally and the implications that this has for us as humans and our understanding of ourselves. As both medical and cultural views of mental health have changed over time, so has our understanding of psychosurgery and its potential applications. It is possible that early attempts to implement psychosurgery, before the advent of modern medicine, did more harm to psychosurgery’s reputation than good. However, without those early forays, we may never have progressed to the modern techniques we now utilise.
Design and engineering are socio-technical enterprises used to solve real-world problems. However, students in these fields are often under-equipped to consider the ethical and societal implications of their work. Our prior work showed that these societal considerations are more consistently embedded in design pedagogy in non-engineering than in engineering courses at MIT. Here, we examine underlying causes for this through a survey of instructors (231 courses from 29 departments). The main contribution of this work is an analysis of whether and how instructors incorporate social, ethical, and policy considerations in design pedagogy. The majority of respondents (60.6%) included these topics in their courses, primarily through discussion of social justice, identity groups, and ethics. These concepts were included more in non-engineering courses (65.8%) than engineering courses (46.9%). Many instructors, especially in engineering, cited irrelevance as the reason for not engaging with these topics in their courses (86.1% compared to 44.2% in non-engineering). We suggest that instructors question this perception and use the examples provided as a starting point to explore integration of these concepts into their technical content.
Background: Dystonia is common in children with acquired and inherited neurological disorders. Status dystonicus (SD) is the most severe form of dystonia that can lead to life-threatening complications if not treated promptly. We identified a local provider knowledge gap in the acute management of dystonia, leading to uncertainty and delays in care. To our knowledge, no in-hospital clinical pathway exists for the ward-based management of acute dystonia. We hypothesized that a stepwise clinical pathway would standardize and improve comfort in managing hyperacute dystonia. Methods: We formed a multidisciplinary working group and developed a pathway based on literature review and expert consensus. Aims of the pathway included: reducing delays in recognition and treatment of acute dystonia, limiting variation in management, and decreasing progression to SD. A survey was administered to providers assessing knowledge and comfort post-implementation. Results: There has been high usability with 58% (18/31) of providers surveyed having used the pathway at least once. Provider comfort has improved, with 89% (25/28) of respondents reporting increased comfort managing SD due to the clarity of the pathway and stepwise directions. Conclusions: The pathway fills a gap in the in-hospital management of dystonia and has led to increased provider comfort.
The dynamics of hydrogen bubbles produced by water electrolysis in an acidic electrolyte is studied using electrochemical and optical methods. A defined cyclic modulation of the electric potential is applied at a microelectrode to produce pairs of interacting H$_2$ bubbles in a controlled manner. Three scenarios of interactions are identified and studied systematically. The most prominent one consists of a sudden reversal in the motion of the first detached bubble, its return to the electrode, and finally its coalescence with the second bubble. Attested by Toepler's schlieren technique, an explanation of contactless motion reversal is provided by the competition between buoyancy and thermocapillary effects.