We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Indian Pulsar Timing Array (InPTA) employs unique features of the upgraded Giant Metrewave Radio Telescope (uGMRT) to monitor dozens of the International Pulsar Timing Array (IPTA) millisecond pulsars (MSPs), simultaneously in the 300-500 MHz and the 1260-1460 MHz bands. This dual-band approach ensures that any frequency-dependent delays are accurately characterized, significantly improving the timing precision for pulsar observations, which is crucial for pulsar timing arrays. We present details of InPTA’s second data release that involves 7 yrs of data on 27 IPTA MSPs. This includes sub-banded Times of Arrival (ToAs), Dispersion Measures (DM), and initial timing ephemerides for our MSPs. A part of this dataset, originally released in InPTA’s first data release, is being incorporated into IPTA’s third data release which is expected to detect and characterize nanohertz gravitational waves in the coming years. The entire dataset is reprocessed in this second data release providing some of the highest precision DM estimates so far and interesting solar wind related DM variations in some pulsars. This is likely to characterize the noise introduced by the dynamic inter-stellar ionised medium much better than the previous release thereby increasing sensitivity to any future gravitational wave search.
Evaluate impact of COVID-19 prevention training with video-based feedback on nursing home (NH) staff safety behaviors.
Design:
Public health intervention
Setting & Participants:
Twelve NHs in Orange County, California, 6/2020-4/2022
Methods:
NHs received direct-to-staff COVID-19 prevention training and weekly feedback reports with video montages about hand hygiene, mask-wearing, and mask/face-touching. One-hour periods of recorded streaming video from common areas (breakroom, hallway, nursing station, entryway) were sampled randomly across days of the week and nursing shifts for safe behavior. Multivariable models assessed the intervention impact.
Results:
Video auditing encompassed 182,803 staff opportunities for safe behavior. Hand hygiene errors improved from first (67.0%) to last (35.7%) months of the intervention, decreasing 7.6% per month (OR = 0.92, 95% CI = 0.92–0.93, P < 0.001); masking errors improved from first (10.3 %) to last (6.6%) months of the intervention, decreasing 2.3% per month (OR = 0.98, 95% CI = 0.97–0.99, P < 0.001); face/mask touching improved from first (30.0%) to last (10.6%) months of the intervention, decreasing 2.5% per month (OR = 0.98, 95% CI = 0.97–0.98, P < 0.001). Hand hygiene errors were most common in entryways and on weekends, with similar rates across shifts. Masking errors and face/mask touching errors were most common in breakrooms, with the latter occurring most commonly during the day (7A.M.–3P.M.) shift, with similar rates across weekdays/weekends. Error reductions were seen across camera locations, days of the week, and nursing shifts, suggesting a widespread benefit within participating NHs.
Conclusion:
Direct-to-staff training with video-based feedback was temporally associated with improved hand hygiene, masking, and face/mask-touching behaviors among NH staff during the COVID-19 pandemic.
Healthcare facilities in the U.S. are well positioned to assist with measles control by timely identification and isolation of suspected or confirmed cases and, as measles is nationally notifiable, by informing local health departments about both suspected and confirmed cases. However, responding to measles cases in acute healthcare settings presents unique challenges, is disruptive, and requires an intense outlay of resources before, during, and afterward primarily due to exposure investigations. We describe our measles preparedness efforts to improve identification of measles cases, facilitate appropriate isolation, reduce exposures, and provide timely post-exposure prophylaxis.
We provide an assessment of the Infinity Two fusion pilot plant (FPP) baseline plasma physics design. Infinity Two is a four-field period, aspect ratio $A = 10$, quasi-isodynamic stellarator with improved confinement appealing to a max-$J$ approach, elevated plasma density and high magnetic fields ($ \langle B\rangle = 9$ T). Here $J$ denotes the second adiabatic invariant. At the envisioned operating point ($800$ MW deuterium-tritium (DT) fusion), the configuration has robust magnetic surfaces based on magnetohydrodynamic (MHD) equilibrium calculations and is stable to both local and global MHD instabilities. The configuration has excellent confinement properties with small neoclassical transport and low bootstrap current ($|I_{bootstrap}| \sim 2$ kA). Calculations of collisional alpha-particle confinement in a DT FPP scenario show small energy losses to the first wall (${\lt}1.5 \,\%$) and stable energetic particle/Alfvén eigenmodes at high ion density. Low turbulent transport is produced using a combination of density profile control consistent with pellet fueling and reduced stiffness to turbulent transport via three-dimensional shaping. Transport simulations with the T3D-GX-SFINCS code suite with self-consistent turbulent and neoclassical transport predict that the DT fusion power$P_{{fus}}=800$ MW operating point is attainable with high fusion gain ($Q=40$) at volume-averaged electron densities $n_e\approx 2 \times 10^{20}$ m$^{-3}$, below the Sudo density limit. Additional transport calculations show that an ignited ($Q=\infty$) solution is available at slightly higher density ($2.2 \times 10^{20}$ m$^{-3}$) with $P_{{fus}}=1.5$ GW. The magnetic configuration is defined by a magnetic coil set with sufficient room for an island divertor, shielding and blanket solutions with tritium breeding ratios (TBR) above unity. An optimistic estimate for the gas-cooled solid breeder designed helium-cooled pebble bed is TBR $\sim 1.3$. Infinity Two satisfies the physics requirements of a stellarator fusion pilot plant.
In this work, we present a detailed assessment of fusion-born alpha-particle confinement, their wall loads and stability of Alfvén eigenmodes driven by these energetic particles in the Infinity Two Fusion Pilot Plant baseline plasma design, a four-field-period quasi-isodynamic stellarator to operate in deuterium–tritium fusion conditions. Using the Monte Carlo codes, SIMPLE, ASCOT5 and KORC-T, we study the collisionless and collisional dynamics of guiding-centre and full-orbit alpha-particles in the core plasma. We find that core energy losses to the wall are less than 4 %. Our simulations shows that peak power loads on the wall of this configuration are approximately 2.5 MW m-$^2$ and are spatially localised, toroidally and poloidaly, in the vicinity of x-points of the magnetic island chain $n/m = 4/5$ outside the plasma volume. Also, an exploratory analysis using various simplified walls shows that shaping and distance of the wall from the plasma volume can help reduce peak power loads. Our stability assessment of Alfvén eigenmodes using the STELLGAP and FAR3d codes shows the absence of unstable modes driven by alpha-particles in Infinity Two due to the relatively low alpha-particle beta at the envisioned 800 MW operating scenario.
The magnetohydrodynamic (MHD) equilibrium and stability properties of the Infinity Two fusion pilot plant baseline plasma physics design are presented. The configuration is a four-field period, aspect ratio $A = 10$ quasi-isodynamic stellarator optimised for excellent confinement at elevated density and high magnetic field $B = 9\,T$. Magnetic surfaces exist in the plasma core in vacuum and retain good equilibrium surface integrity from vacuum to an operational $\beta = 1.6 \,\%$, the ratio of the volume average of the plasma and magnetic pressures, corresponding to $800\ \textrm{MW}$ deuterium–tritium fusion operation. Neoclassical calculations show that a self-consistent bootstrap current of the order of ${\sim} 1\ \textrm{kA}$ slightly increases the rotational transform profile by less than 0.001. The configuration has a magnetic well across its entire radius. From vacuum to the operating point, the configuration exhibits good ballooning stability characteristics, exhibits good Mercier stability across most of its minor radius and it is stable against global low-n MHD instabilities up to $\beta = 3.2\,\%$.
Redweed is a tropical, erect branched herb, and one of the predominant broadleaf weeds affecting upland crops in the Onattukara Sandy Plains of Kerala, India. Experiments were conducted in a screenhouse in Thiruvananthapuram, Kerala, India, to determine the effects of seed burial depth and seed scarification on emergence indices and growth attributes of redweed. Scarification stimulated emergence and resulted in greater values for emergence indices and seedling parameters. The seedling emergence of redweed was influenced by seed burial depth. Shallow seed burial (2 cm) of scarified and non-scarified seeds resulted in greater seedling length (70 cm and 58 cm, respectively), seedling biomass (0.72 g and 0.48 g, respectively), emergence percentage (60% and 32%, respectively), and greater values for other emergence indices. As the depth of seed burial increased from 2 cm, emergence and seedling biomass decreased, exhibiting lower values for the emergence indices. Correlation and regression studies revealed that seed burial depth of scarified and non-scarified seeds greater than 2 cm had a negative effect on seedling emergence and biomass of redweed. Weed biology studies indicated that redweed displayed notable consistency in its phenological traits, regardless of the location where the seeds were collected, as little ecotype variability was observed. Emergence occurred in 6 d, 50% flowering in 44 d, capsule formation in 56 d, and maturity in 76 d. On average, a single plant produced 277 seeds and had a 100-seed weight of 0.31 g. A stale seedbed with shallow tillage or deep plowing to a depth of 10 cm before sowing can be adopted to reduce the infestation of redweed.
A knowledge, attitudes and control practices (KAP)-based study on ticks and tick-borne diseases (TTBD) and resistance development in ticks was conducted in Dhar district of Madhya Pradesh covering 200 livestock owners using a questionnaire. Based on our scoring criteria, results indicated only 25% (19.16–31.60) respondents possessing basic knowledge of TTBDs while 75% (68.40–80.84) respondents were not aware of TBDs. Due to lack of proper awareness of TTBDs, about 1.28 times more respondents (OR 95% CI 0.42–3.86) were having heavy tick infestations in their animals. However, about 36.5% (29.82–43.58) respondents showed a favourable attitude towards the adoption of different tick control practices; consequently, their animals showed low-level infestation. Amongst various feeding systems for animals, a mixed type of feeding system was mostly adopted by 57.5% respondents followed by manger system (37.5%) while grazing was the least adopted method (5%). Results indicated that the grazing animals were 6 times (OR 95% CI 2.93–12.28) more susceptible to ticks and possessed heavy tick infestation. Resistance status of collected tick isolates of Rhipicephalus microplus and Hyalomma anatolicum was assessed and revealed that both tick species were found resistant to deltamethrin. The goals of this study were to assess some of the underlying causes of ticks and TBD in livestock in Dhar district of Madhya Pradesh state using the KAP survey and resistance characterization of ticks.
The aviation industry’s efforts to reduce carbon emissions have driven the rapid development and scale-up of sustainable aviation fuels (SAFs). SAFs have the potential to significantly reduce CO2 lifecycle emissions by up to 80% in comparison to Jet A and other conventional fossil-derived jet fuels. For multiple logistical and practical reasons, it is preferable to ensure that SAFs are ‘essentially identical’ (also referred to as ‘drop-in SAF’) to conventional jet fuel in terms of their performance, durability and compatibility with existing hardware systems. Because the majority of SAFs are not identical (non-drop-in) to conventional jet fuel, they have not been approved for use in their neat (100%) form. Instead, these non-identical SAFs are named synthetic blend components (SBC) as they are blended with conventional fuels to different extents per ASTM D7566-23a. It should be noted that there are on-going efforts to develop non-drop in SAF specifications to broaden their proliferation and maximise the aviation industries’ ability to reduce CO2 lifecycle emissions. One very important area of focus is the compatibility of SAFs with engine and fuel system seals, specifically understanding the dynamics of elastomeric seals. To address this, a novel approach has been developed to measure seal dynamics in flowing fuel. This technique has been applied to study the dynamic seal behaviour of four industrially relevant elastomer seals commonly employed in aviation fuel systems. The study involved three test fuels: (i) conventional fossil-derived Jet A, neat hydroprocessed esters and fatty acids (HEFA) SAF, and neat alcohol to jet (ATJ) SAF. Notably, both HEFA and ATJ fuels contain 0% aromatics, in contrast to Jet A, which typically contains around 17% aromatics by volume. The novel fuel-elastomer test rig used in this study was designed to simulate a practical scenario in which fuel flows through the inner surface of a pre-loaded static O-ring. The results of these tests demonstrate that the behaviour of different nitrile elastomers is unique to their formulation, and in all cases, the behaviour in HEFA and ATJ SAF differs significantly from that in Jet A. However, new fuel approval tests may only list one type of elastomer for evaluation, for example the ‘Fit-for-Purpose’ test in ASTM D4054-22 Tier 2 lists one specific nitrile. The findings of this study highlight the complexities of fuel-elastomer interactions within nominally identical chemical families and emphasise the potential risks of assessing compatibility based on tests conducted with a single member of a chemical family.
We aimed to assess risk of COVID-19 infection & seroprotection status in healthcare workers (HCWs) in both hospital and community settings following an intensive vaccination drive in India.
Setting:
Tertiary Care Hospital
Methods:
We surveyed COVID-19 exposure risk, personal protective equipment (PPE) compliance, vaccination status, mental health & COVID-19 infection rate across different HCW cadres. Elecsys® test for COVID-19 spike (Anti-SARS-CoV-2S; ACOVs) and nucleocapsid (Anti-SARS-CoV-2; ACOV) responses following vaccination and/or COVID-19 infection were measured in a stratified sample of 386 HCW.
Results:
We enrolled 945 HCWs (60.6% male, age 35.9 ± 9.8 years, 352 nurses, 211 doctors, 248 paramedics & 134 support staff). Hospital PPE compliance was 90.8%. Vaccination coverage was 891/945 (94.3%). ACOVs neutralizing antibody was reactive in 381/386 (98.7%). ACOVs titer (U/ml) was higher in the post-COVID-19 infection group (N =269; 242.1 ± 35.7 U/ml) than in the post-vaccine or never infected subgroup (N = 115, 204.1 ± 81.3 U/ml). RT PCR + COVID-19 infections were documented in 224/945 (23.7%) and 6 HCWs had disease of moderate severity, with no deaths. However, 232/386 (60.1%) of HCWs tested positive for nucleocapsid ACOV antibody, suggesting undocumented or subclinical COVID-19 infection. On multivariate logistic regression, only female gender [aOR 1.79, 95% CI 1.07–3.0, P = .025] and COVID-19 family contact [aOR 5.1, 95% CI 3.84–9.5, P < .001] were predictors of risk of developing COVID-19 infection, independent of association with patient-related exposure.
Conclusion:
Our HCWs were PPE compliant and vaccine motivated, with immunization coverage of 94.3% and seroprotection rate of 98.7%. There was no relationship between HCW COVID-19 infection to exposure characteristics in the hospital. Vaccination reduced disease severity and prevented death in HCW.
Normally, the reported gain of the microstrip patch antenna is within 8 dBi. Using properly located three shorting pins on three bisectors, the present work reports a method to convert the non-radiating TM11 mode of equilateral triangular patch antennas (ETPAs) to a deformed TM11 radiating mode. The boresight gain of ETPA operating in TM11 mode is enhanced from −10.75 to 12.1 dBi at 5.43 GHz. The boresight measured gain is further enhanced to 14.2 dBi at 5.52 GHz by using a triangular surface-mounted short horn (SMSH) of about ${{\lambda }}/5$ height. The aperture efficiency of the ETPA with the shorting pins is 84.2%. The aperture efficiency is further improved to 94.2% using the SMSH. The measured boresight cross-polarization and side-lobe level are −40 and −29 dB, respectively. The nature of the electricfield and surface current distribution is analyzed, using both the characteristic mode analysis method and high-frequency structure simulator, to understand the role of shorting pin and coaxial feed in converting the non-radiating TM11 mode to the radiating mode. A systematic design process also is presented for a fast design of shorting pin-loaded ETPA on the suitable substrate at a specified frequency.
Dates from recently excavated Gangetic site of Sakas in Bihar, India, place it at ca.1800–1100 BC. The ceramic and lithic chronologies have been interpreted as Early Farming, Transitional and Chalcolithic/Developed Farming in date. However, depending on where in the Ganges Plains is studied, the time frame of Early, Developed and Advanced Farming periods varies widely, from 7th millennium to 2nd millennium BC and beyond, making the chronological framing of absolute dates within a regional scheme highly complex. In this paper we report the new radiocarbon results from Sakas and note how while these are critical for cementing the absolute dating of the site, until such time as a more stable periodization linked not only to relative and absolute dates but also human lifeways within the different zones of the Ganges plains is created, there remains difficulties in understanding how Sakas and other sites of similar date fit into the changing social, cultural and economic systems in this region.
We evaluated whether universal chlorhexidine bathing (decolonization) with or without COVID-19 intensive training impacted COVID-19 rates in 63 nursing homes (NHs) during the 2020–2021 Fall/Winter surge. Decolonization was associated with a 43% lesser rise in staff case-rates (P < .001) and a 52% lesser rise in resident case-rates (P < .001) versus control.
Tight focusing with very small f-numbers is necessary to achieve the highest at-focus irradiances. However, tight focusing imposes strong demands on precise target positioning in-focus to achieve the highest on-target irradiance. We describe several near-infrared, visible, ultraviolet and soft and hard X-ray diagnostics employed in a ∼1022 W/cm2 laser–plasma experiment. We used nearly 10 J total energy femtosecond laser pulses focused into an approximately 1.3-μm focal spot on 5–20 μm thick stainless-steel targets. We discuss the applicability of these diagnostics to determine the best in-focus target position with approximately 5 μm accuracy (i.e., around half of the short Rayleigh length) and show that several diagnostics (in particular, 3$\omega$ reflection and on-axis hard X-rays) can ensure this accuracy. We demonstrated target positioning within several micrometers from the focus, ensuring over 80% of the ideal peak laser intensity on-target. Our approach is relatively fast (it requires 10–20 laser shots) and does not rely on the coincidence of low-power and high-power focal planes.
This investigation was carried out to study the effect of different concentrations of citric acid and glycine, which are common in freshwaters, on the kinetics of the adsorption of Hg by kaolinite under various pH conditions. The data indicate that Hg adsorption by kaolinite at different concentrations of citric acid and glycine obeyed multiple first order kinetics. In the absence of the organic acids, the rate constants of the initial fast process were 46 to 75 times faster than those of the slow adsorption process in the pH range of 4.00 to 8.00. Citric acid had a significant retarding effect on both the fast and slow adsorption process at pHs of 6.0 and 8.0. It had a significant promoting effect on the fast and slow adsorption process at pH 4.00. Glycine had a pronounced enhancing effect on the rate of Hg adsorption by kaolinite during the fast process. The rise in pH of the system further increased the effect of glycine on Hg adsorption. The magnitude of the retarding/promoting effect upon the rate of Hg adsorption was evidently dependent upon the pH, structure and functionality of organic acids, and molar ratio of the organic acid/Hg. The data obtained suggest that low-molecular-weight organic acids merit close attention in studying the kinetics and mechanisms of the binding of Hg by sediment particulates and the subsequent food chain contamination.
A quaternary ammonium and alcohol-based disinfectant with reported continuous activity demonstrated reduced microbial buildup on surfaces over time compared to routine disinfectants without continuous activity in in vitro and hospital studies. We compared these disinfectants in ambulatory settings and found no difference in bioburden on high-touch surfaces over time.
The herbicides that inhibit very-long-chain fatty acid (VLCFA) elongases are primarily used for residual weed control in corn, barley, oat, sorghum, soybean, sugarcane, certain vegetable crops, and wheat production fields in the United States. They act primarily by inhibiting shoot development of susceptible species, preventing weed emergence and growth. The objectives of this review were to summarize 1) the chemical family of VLCFA-inhibiting herbicides and their use in the United States, 2) the VLCFA biosynthesis in plants and their site of action, 3) VLCFA-inhibitor resistant weeds and their mechanism of resistance, and 4) the future of VLCFA-inhibiting herbicides. After their reclassification as Group 15 herbicides to include shoot growth-inhibiting herbicides (Group 8), the VLCFA-inhibiting herbicides are currently represented by eight chemical families (benzofurans, thiocarbamates, α-chloroacetamides, α-oxyacetamides, azolyl-carboxamides, isoxazolines, α-thioacetamides, and oxiranes). On average, VLCFA-inhibiting herbicides are applied once a year to both corn and soybean crops in the United States with acetochlor and S-metolachlor being the most used VLCFA-inhibiting herbicides in corn and soybean production, respectively. The site of action of Group 15 herbicides results from inhibition of the VLCFA synthase, which is encoded by several fatty acid elongase (FAE1)-like genes in VLCFA elongase complex in an endoplasmic reticulum. The VLCFA synthase is a condensing enzyme, and relies on a conserved, reactive cysteinyl sulfur in its active site that performs a nucleophilic attack on either the natural substrate (fatty acyl-CoA) or the herbicide. As of August 2023, 13 weed species have been documented to be resistant to VLCFA inhibitors, including 11 monocot weeds and two dicot weeds (Palmer amaranth and waterhemp). The isoxazolines (pyroxasulfone and fenoxasulfone) are the most recently (2014) discovered VLCFA-inhibiting herbicides. Although the intensity of VLCFA-inhibitor-directed discovery efforts has decreased over the past decade, this biochemical pathway remains a viable mechanistic target for the discovery of herbicide premixes and a valuable component of them.
We identify a set of essential recent advances in climate change research with high policy relevance, across natural and social sciences: (1) looming inevitability and implications of overshooting the 1.5°C warming limit, (2) urgent need for a rapid and managed fossil fuel phase-out, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future contribution of natural carbon sinks, (5) intertwinedness of the crises of biodiversity loss and climate change, (6) compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems.
Technical summary
The Intergovernmental Panel on Climate Change Assessment Reports provides the scientific foundation for international climate negotiations and constitutes an unmatched resource for researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding of climate change across diverse research communities, we have streamlined an annual process to identify and synthesize significant research advances. We collected input from experts on various fields using an online questionnaire and prioritized a set of 10 key research insights with high policy relevance. This year, we focus on: (1) the looming overshoot of the 1.5°C warming limit, (2) the urgency of fossil fuel phase-out, (3) challenges to scale-up carbon dioxide removal, (4) uncertainties regarding future natural carbon sinks, (5) the need for joint governance of biodiversity loss and climate change, (6) advances in understanding compound events, (7) accelerated mountain glacier loss, (8) human immobility amidst climate risks, (9) adaptation justice, and (10) just transitions in food systems. We present a succinct account of these insights, reflect on their policy implications, and offer an integrated set of policy-relevant messages. This science synthesis and science communication effort is also the basis for a policy report contributing to elevate climate science every year in time for the United Nations Climate Change Conference.
Social media summary
We highlight recent and policy-relevant advances in climate change research – with input from more than 200 experts.
The North-Eastern region (NER) of India falls under the Eastern Himalayan region and it is a bio-diversity hub. Diverse maize landraces with wide adaptability to extreme climatic and soil scenario like heavy rainfall, drought and acidic soil conditions have been grown in NER since time immemorial. However, maize diversity in NER region has drastically reduced due to introduction of high yielding varieties and hybrids. Modern maize breeding programmes are focused on high yield but other unique traits like stay green trait, prolificacy (more than one fertile ear per plant), self-fertilizing ability are also important and the local germplasm of the NER region can contribute with these unique traits. Prior to the selection of any lines in several breeding programmes, assessment of genetic diversity and population structure are basic requirements. Hence, in the present study assessment of genetic diversity and population structure study in 30 maize inbreds developed from different germplasm of NER was undertaken using SSR markers, selected for their broad distribution throughout the genome, in order to assess the extent of allelic diversity among the lines and whether any population structure could be established. In addition to assessing molecular diversity, the study aims to evaluate the potential for yield and other beneficial and unique alleles that have high potential to contribute in the genetic enhancement programme of maize.