We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Background: The WHO grade of meningioma was updated in 2021 to include homozygous deletions of CDKN2A/B and TERT promotor mutations. Previous work including the recent cIMPACT-NOW statement have discussed the potential value of including chromosomal copy number alterations to help refine the current grading system. Methods: Chromosomal copy number profiles were inferred from from 1964 meningiomas using DNA methylation. Regularized Cox regresssion was used to identify CNAs independenly associated with post-surgical and post-RT PFS. Outcomes were stratified by WHO grade and novel CNAs to assess their potential value in WHO critiera. Results: Patients with WHO grade 1 tumours and chromosome 1p loss had similar outcomes to those with WHO grade 2 tumours (median PFS 5.83 [95% CI 4.36-Inf] vs 4.48 [4.09-5.18] years). Those with chromosome 1p loss and 1q gain had similar outcomes to those with WHO grade 3 cases regardless of initial grade (median PFS 2.23 [1.28-Inf] years WHO grade 1, 1.90 [1.23-2.25] years WHO grade 2, compared to 2.27 [1.68-3.05] years in WHO grade 3 cases overall). Conclusions: We advocate for chromosome 1p loss being added as a criterion for a CNS WHO grade of 2 meningioma and addition of 1q gain as a criterion for a CNS WHO grade of 3.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
Efficient evidence generation to assess the clinical and economic impact of medical therapies is critical amid rising healthcare costs and aging populations. However, drug development and clinical trials remain far too expensive and inefficient for all stakeholders. On October 25–26, 2023, the Duke Clinical Research Institute brought together leaders from academia, industry, government agencies, patient advocacy, and nonprofit organizations to explore how different entities and influencers in drug development and healthcare can realign incentive structures to efficiently accelerate evidence generation that addresses the highest public health needs. Prominent themes surfaced, including competing research priorities and incentives, inadequate representation of patient population in clinical trials, opportunities to better leverage existing technology and infrastructure in trial design, and a need for heightened transparency and accountability in research practices. The group determined that together these elements contribute to an inefficient and costly clinical research enterprise, amplifying disparities in population health and sustaining gaps in evidence that impede advancements in equitable healthcare delivery and outcomes. The goal of addressing the identified challenges is to ultimately make clinical trials faster, more inclusive, and more efficient across diverse communities and settings.
The locus coeruleus (LC) innervates the cerebrovasculature and plays a crucial role in optimal regulation of cerebral blood flow. However, no human studies to date have examined links between these systems with widely available neuroimaging methods. We quantified associations between LC structural integrity and regional cortical perfusion and probed whether varying levels of plasma Alzheimer’s disease (AD) biomarkers (Aß42/40 ratio and ptau181) moderated these relationships.
Participants and Methods:
64 dementia-free community-dwelling older adults (ages 55-87) recruited across two studies underwent structural and functional neuroimaging on the same MRI scanner. 3D-pCASL MRI measured regional cerebral blood flow in limbic and frontal cortical regions, while T1-FSE MRI quantified rostral LC-MRI contrast, a well-established proxy measure of LC structural integrity. A subset of participants underwent fasting blood draw to measure plasma AD biomarker concentrations (Aß42/40 ratio and ptau181). Multiple linear regression models examined associations between perfusion and LC integrity, with rostral LC-MRI contrast as predictor, regional CBF as outcome, and age and study as covariates. Moderation analyses included additional terms for plasma AD biomarker concentration and plasma x LC interaction.
Results:
Greater rostral LC-MRI contrast was linked to lower regional perfusion in limbic regions, such as the amygdala (ß = -0.25, p = 0.049) and entorhinal cortex (ß = -0.20, p = 0.042), but was linked to higher regional perfusion in frontal cortical regions, such as the lateral (ß = 0.28, p = 0.003) and medial (ß = 0.24, p = 0.05) orbitofrontal (OFC) cortices. Plasma amyloid levels moderated the relationship between rostral LC and amygdala CBF (Aß42/40 ratio x rostral LC interaction term ß = -0.31, p = 0.021), such that as plasma Aß42/40 ratio decreased (i.e., greater pathology), the strength of the negative relationship between rostral LC integrity and amygdala perfusion decreased. Plasma ptau181levels moderated the relationship between rostral LC and entorhinal CBF (ptau181 x rostral LC interaction term ß = 0.64, p = 0.001), such that as ptau181 increased (i.e., greater pathology), the strength of the negative relationship between rostral LC integrity and entorhinal perfusion decreased. For frontal cortical regions, ptau181 levels moderated the relationship between rostral LC and lateral OFC perfusion (ptau181 x rostral LC interaction term ß = -0.54, p = .004), as well as between rostral LC and medial OFC perfusion (ptau181 x rostral LC interaction term ß = -0.53, p = .005), such that as ptau181 increased (i.e., greater pathology), the strength of the positive relationship between rostral LC integrity and frontal perfusion decreased.
Conclusions:
LC integrity is linked to regional cortical perfusion in non-demented older adults, and these relationships are moderated by plasma AD biomarker concentrations. Variable directionality of the associations between the LC and frontal versus limbic perfusion, as well as the differential moderating effects of plasma AD biomarkers, may signify a compensatory mechanism and a shifting pattern of hyperemia in the presence of aggregating AD pathology. Linking LC integrity and cerebrovascular regulation may represent an important understudied pathway of dementia risk and may help to bridge competing theories of dementia progression in preclinical AD studies.
Blood-culture overutilization is associated with increased cost and excessive antimicrobial use. We implemented an intervention in the adult intensive care unit (ICU), combining education based on the DISTRIBUTE algorithm and restriction to infectious diseases and ICU providers. Our intervention led to reduced blood-culture utilization without affecting safety metrics.
Nonlinear simulations of Alfvén modes (AMs) driven by energetic particles (EPs) in the presence of turbulence are performed with the gyrokinetic particle-in-cell code ORB5. The AMs carry a heat flux, and consequently they nonlinearly modify the plasma temperature profiles. The isolated effect of this modification on the dynamics of turbulence is studied by means of electrostatic simulations. We find that turbulence is reduced when the profiles relaxed by the AM are used, with respect to the simulation where the unperturbed profiles are used. This is an example of indirect interaction of EPs and turbulence. First, an analytic magnetic equilibrium with circular concentric flux surfaces is considered as a simplified example for this study. Then, an application to an experimentally relevant case of ASDEX Upgrade is discussed.
In the Western Scheldt estuary, like in many estuaries, safe navigation, flood protection, and ecological targets require a balanced and sustainable sediment management. A thorough understanding of the morphodynamic functioning of the estuary and its response to changes in hydrodynamics (natural sediment transport) and large-scale interventions is imperative. This paper presents a detailed overview of over 65 years of morphological changes and a comprehensive sediment budget of the Western Scheldt estuary that is based on analysis of a unique series of frequent bathymetric surveys and historical data on human–sediment interactions of dredging, dredge disposal and sand mining. Solving the sediment budget reveals an annual sediment import of 2.2 million m3. The highest sediment imports occurred between 1980–1994 and 2005–2020 (2.9 and 3.7 million m3/year). A 1.3 million m3/year net export prevailed between 1994 and 2005. Natural variations in the hydrodynamics (e.g., tidal asymmetry and amplification) and sediment transports cannot explain the derived temporal variations in sediment import rates. Anthropogenic activities play a dominant role. Capital dredging of the main navigation channel has led to channel deepening and significantly increased dredge and disposal volumes. Disposal on tidal flats and in the secondary channel leads to a long-term storage of sand and, consequently, a local increase in bed level and a sand deficit in the remainder of the system that results in increased sediment imports. Large-scale disposal in the western part of the estuary can (temporarily) reverse the sediment exchange between the estuary and its mouth area, as observed between 1994 and 2005. Apparently, large-scale anthropogenic reallocation of sediment by dredging and/or disposal as part of navigation channel improvement, sand mining or nourishment essentially influences the morphological development of the Western Scheldt estuary. This reveals responsibilities as well as opportunities of sediment management for the Western Scheldt and similar estuaries worldwide.
It is a simple method to identify the hub dynamic loads of rotor by measuring the vibration responses on helicopter fuselage. However, the identification accuracy of the hub dynamic loads is related to the layout or placement of measuring points on the fuselage. The identification will be inaccurate if the layout of measuring points on the fuselage is unreasonable to result in the “ill-conditioned” frequency response function (FRF) matrix measured on the fuselage. In order to avoid the inaccurate identification due to the “ill-conditioned” measured FRF matrix, an accurate method for identifying the hub dynamic loads of rotor by vibration measurement on helicopter fuselage is proposed in this paper. In the proposed method, the reasonable layout of the measuring points on the fuselage for the “well-conditioned” measured FRF matrix can be obtained according to the condition number of the measured FRF matrix on the fuselage, and then the hub dynamic loads of rotor can be accurately identified. The simulation and experiment of the identification of the hub dynamic loads on a dynamically similar frame structure of a helicopter cockpit floor have verified the effectiveness and accuracy of the proposed method.
TDuring COVID-19 pandemic, it was noticed that it was students who were mostly affected by the changes that aroused because of the pandemic. The interesting part is whether students’ well-being could be associated with their fields of study as well as coping strategies.
Objectives
In this study, we aimed to assess 1) the mental health of students from nine countries with a particular focus on depression, anxiety, and stress levels and their fields of study, 2) the major coping strategies of students after one year of the COVID-19 pandemic.
Methods
We conducted an anonymous online cross-sectional survey on 12th April – 1st June 2021 that was distributed among the students from Poland, Mexico, Egypt, India, Pakistan, China, Vietnam, Philippines, and Bangladesh. To measure the emotional distress, we used the Depression, Anxiety, and Stress Scale-21 (DASS-21), and to identify the major coping strategies of students - the Brief-COPE.
Results
We gathered 7219 responses from students studying five major studies: medical studies (N=2821), social sciences (N=1471), technical sciences (N=891), artistic/humanistic studies (N=1094), sciences (N=942). The greatest intensity of depression (M=18.29±13.83; moderate intensity), anxiety (M=13.13±11.37; moderate intensity ), and stress (M=17.86±12.94; mild intensity) was observed among sciences students. Medical students presented the lowest intensity of all three components - depression (M=13.31±12.45; mild intensity), anxiety (M=10.37±10.57; moderate intensity), and stress (M=13.65±11.94; mild intensity). Students of all fields primarily used acceptance and self-distraction as their coping mechanisms, while the least commonly used were self-blame, denial, and substance use. The group of coping mechanisms the most frequently used was ‘emotional focus’. Medical students statistically less often used avoidant coping strategies compared to other fields of study. Substance use was only one coping mechanism that did not statistically differ between students of different fields of study. Behavioral disengagement presented the highest correlation with depression (r=0.54), anxiety (r=0.48), and stress (r=0.47) while religion presented the lowest positive correlation with depression (r=0.07), anxiety (r=0.14), and stress (r=0.11).
Conclusions
1) The greatest intensity of depression, anxiety, and stress was observed among sciences students, while the lowest intensity of those components was found among students studying medicine.
2) Not using avoidant coping strategies might be associated with lower intensity of all DASS components among students.
3) Behavioral disengagement might be strongly associated with greater intensity of depression, anxiety, and stress among students.
4) There was no coping mechanism that provided the alleviation of emotional distress in all the fields of studies of students.
Major Depressive Disorder (MDD) is one of the most common mental illnesses worldwide and is strongly associated with suicidality. Commonly used treatments for MDD with suicidality include crisis intervention, oral antidepressants (although risk of suicidal behavior is high among non-responders and during the first 10-14 days of the treatment) benzodiazepines and lithium. Although several interventions addressing suicidality exist, only few studies have characterized in detail patients with MDD and suicidality, including treatment, clinical course and outcomes. Patient Characteristics, Validity of Clinical Diagnoses and Outcomes Associated with Suicidality in Inpatients with Symptoms of Depression (OASIS-D)-study is an investigator-initiated trial funded by Janssen-Cilag GmbH.
Objectives
For population 1 out of 3 OASIS-D populations, to assess the sub-population of patients with suicidality and its correlates in hospitalized individuals with MDD.
Methods
The ongoing OASIS-D study consecutively examines hospitalized patients at 8 German psychiatric university hospitals treated as part of routine clinical care. A sub-group of patients with persistent suicidality after >48 hours post-hospitalization are assessed in detail and a sub-group of those are followed for 6 months to assess course and treatment of suicidality associated with MDD. The present analysis focuses on a preplanned interim analysis of the overall hospitalized population with MDD.
Results
Of 2,049 inpatients (age=42.5±15.9 years, females=53.2%), 68.0% had severe MDD without psychosis and 21.2% had moderately severe MDD, with 16.7% having treatment-resistant MDD. Most inpatients referred themselves (49.4%), followed by referrals by outpatient care providers (14.6%), inpatient care providers (9.0%), family/friends (8.5%), and ambulance (6.8%). Of these admissions, 43.1% represented a psychiatric emergency, with suicidality being the reason in 35.9%. Altogether, 72.4% had at least current passive suicidal ideation (SI, lifetime=87.2%), including passive SI (25.1%), active SI without plan (15.5%), active SI with plan (14.2%), and active SI with plan+intent (14.1%), while 11.5% had attempted suicide ≤2 weeks before admission (lifetime=28.7%). Drug-induced mental and behavioral disorders (19.6%) were the most frequent comorbid disorders, followed by personality disorders (8.2%). Upon admission, 64.5% were receiving psychiatric medications, including antidepressants (46.7%), second-generation antipsychotics (23.0%), anxiolytics (11.4%) antiepileptics (6.0%), and lithium (2.8%). Altogether, 9.8% reported nonadherence to medications within 6 months of admission.
Conclusions
In adults admitted for MDD, suicidality was common, representing a psychiatric emergency in 35.9% of patients. Usual-care treatments and outcomes of suicidality in hospitalized adults with MDD require further study.
With the advent of deep, all-sky radio surveys, the need for ancillary data to make the most of the new, high-quality radio data from surveys like the Evolutionary Map of the Universe (EMU), GaLactic and Extragalactic All-sky Murchison Widefield Array survey eXtended, Very Large Array Sky Survey, and LOFAR Two-metre Sky Survey is growing rapidly. Radio surveys produce significant numbers of Active Galactic Nuclei (AGNs) and have a significantly higher average redshift when compared with optical and infrared all-sky surveys. Thus, traditional methods of estimating redshift are challenged, with spectroscopic surveys not reaching the redshift depth of radio surveys, and AGNs making it difficult for template fitting methods to accurately model the source. Machine Learning (ML) methods have been used, but efforts have typically been directed towards optically selected samples, or samples at significantly lower redshift than expected from upcoming radio surveys. This work compiles and homogenises a radio-selected dataset from both the northern hemisphere (making use of Sloan Digital Sky Survey optical photometry) and southern hemisphere (making use of Dark Energy Survey optical photometry). We then test commonly used ML algorithms such as k-Nearest Neighbours (kNN), Random Forest, ANNz, and GPz on this monolithic radio-selected sample. We show that kNN has the lowest percentage of catastrophic outliers, providing the best match for the majority of science cases in the EMU survey. We note that the wider redshift range of the combined dataset used allows for estimation of sources up to $z = 3$ before random scatter begins to dominate. When binning the data into redshift bins and treating the problem as a classification problem, we are able to correctly identify $\approx$76% of the highest redshift sources—sources at redshift $z > 2.51$—as being in either the highest bin ($z > 2.51$) or second highest ($z = 2.25$).
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
We investigate the diversity in the sizes and average surface densities of the neutral atomic hydrogen (H i) gas discs in $\sim$280 nearby galaxies detected by the Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY). We combine the uniformly observed, interferometric H i data from pilot observations of the Hydra cluster and NGC 4636 group fields with photometry measured from ultraviolet, optical, and near-infrared imaging surveys to investigate the interplay between stellar structure, star formation, and H i structural parameters. We quantify the H i structure by the size of the H i relative to the optical disc and the average H i surface density measured using effective and isodensity radii. For galaxies resolved by $>$$1.3$ beams, we find that galaxies with higher stellar masses and stellar surface densities tend to have less extended H i discs and lower H i surface densities: the isodensity H i structural parameters show a weak negative dependence on stellar mass and stellar mass surface density. These trends strengthen when we limit our sample to galaxies resolved by $>$2 beams. We find that galaxies with higher H i surface densities and more extended H i discs tend to be more star forming: the isodensity H i structural parameters have stronger correlations with star formation. Normalising the H i disc size by the optical effective radius (instead of the isophotal radius) produces positive correlations with stellar masses and stellar surface densities and removes the correlations with star formation. This is due to the effective and isodensity H i radii increasing with mass at similar rates while, in the optical, the effective radius increases slower than the isophotal radius. Our results are in qualitative agreement with previous studies and demonstrate that with WALLABY we can begin to bridge the gap between small galaxy samples with high spatial resolution H i data and large, statistical studies using spatially unresolved, single-dish data.
As a typical plasma-based optical element that can sustain ultra-high light intensity, plasma density gratings driven by intense laser pulses have been extensively studied for wide applications. Here, we show that the plasma density grating driven by two intersecting driver laser pulses is not only nonuniform in space but also varies over time. Consequently, the probe laser pulse that passes through such a dynamic plasma density grating will be depolarized, that is, its polarization becomes spatially and temporally variable. More importantly, the laser depolarization may spontaneously take place for crossed laser beams if their polarization angles are arranged properly. The laser depolarization by a dynamic plasma density grating may find application in mitigating parametric instabilities in laser-driven inertial confinement fusion.
Meat quality is not only influenced by breed but also rearing environment. The aim of this study was to evaluate the influence of different housing environments on growth performance, carcase traits, meat quality, physiological response pre-slaughter and fatty acid composition in two pig breeds. A total of 120 growing pigs at 60-70 days of age were arranged in a 2 × 2 factorial design with the breeds (Duroc × Landrace × Large White [D × L × LW] and Duroc × Landrace × Min pig [D × L × M]) and environmental enrichment (barren concrete floor or enriched with straw bedding) as factors. Each treatment was performed in triplicate with ten pigs per replicate. The pigs housed in the enriched environment exhibited a higher average daily gain, average daily feed intake, saturated fatty acid percentage and backfat depth than the pigs reared in the barren environment. Plasma cortisol levels were lower and growth hormone higher in enriched compared to barren pens. The D × L × M pigs showed lower cooking loss compared with the D × L × LW pigs. Moreover, the D × L × M pigs exhibited poor growth performance but had a better water-holding capacity. Only carcase traits and meat quality interaction effects were observed. We concluded that an enriched environment can reduce preslaughter stress and improve the growth performance of pigs and modulate the fatty acid composition of pork products.
We present the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) Pilot Phase I Hi kinematic models. This first data release consists of Hi observations of three fields in the direction of the Hydra and Norma clusters, and the NGC 4636 galaxy group. In this paper, we describe how we generate and publicly release flat-disk tilted-ring kinematic models for 109/592 unique Hi detections in these fields. The modelling method adopted here—which we call the WALLABY Kinematic Analysis Proto-Pipeline (WKAPP) and for which the corresponding scripts are also publicly available—consists of combining results from the homogeneous application of the FAT and 3DBarolo algorithms to the subset of 209 detections with sufficient resolution and $S/N$ in order to generate optimised model parameters and uncertainties. The 109 models presented here tend to be gas rich detections resolved by at least 3–4 synthesised beams across their major axes, but there is no obvious environmental bias in the modelling. The data release described here is the first step towards the derivation of similar products for thousands of spatially resolved WALLABY detections via a dedicated kinematic pipeline. Such a large publicly available and homogeneously analysed dataset will be a powerful legacy product that that will enable a wide range of scientific studies.
We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three $60\,\mathrm{deg}^{2}$ regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of $z \lesssim 0.08$. The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of $z \approx 0.014$ is relatively low compared to the full WALLABY survey. The median galaxy H i mass is $2.3 \times 10^{9}\,{\rm M}_{{\odot}}$. The target noise level of $1.6\,\mathrm{mJy}$ per 30′′ beam and $18.5\,\mathrm{kHz}$ channel translates into a $5 \sigma$ H i mass sensitivity for point sources of about $5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}}$ across 50 spectral channels (${\approx} 200\,\mathrm{km \, s}^{-1}$) and a $5 \sigma$ H i column density sensitivity of about $8.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2}$ across 5 channels (${\approx} 20\,\mathrm{km \, s}^{-1}$) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
The extent of the reduction of maize (Zea mays L.) kernel moisture content through drying is closely related to field temperature (or accumulated temperature; AT) following maturation. In 2017 and 2018, we selected eight maize hybrids that are widely planted in Northeastern China to construct kernel drying prediction models for each hybrid based on kernel drying dynamics. In the traditional harvest scenario using the optimal sowing date (OSD), maize kernels underwent drying from 4th September to 5th October, with variation coefficients of 1.0–1.9. However, with a latest sowing date (LSD), drying occurred from 14th September to 31st October, with variation coefficients of 1.3–3.0. In the changed harvest scenario, the drying time of maize sown on the OSD condition was from 12th September to 9th November with variation coefficients of 1.3–3.0, while maize sown on the LSD had drying dates of 26th September to 28th October with variation coefficients of 1.5–3.6. In the future harvest scenario, the Fengken 139 (FK139) and Jingnongke 728 (JNK728) hybrids finished drying on 20th October and 8th November, respectively, when sown on the OSD and had variation coefficients of 2.7–2.8. Therefore, the maize kernel drying time was gradually delayed and was associated with an increased demand for AT ⩾ 0°C late in the growing season. Furthermore, we observed variation among different growing seasons likely due to differences in weather patterns, and that sowing dates impact variations in drying times to a greater extent than harvest scenarios.