We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The evolution of settling fine particle clouds in transition or rarefied flow regimes is a fundamental yet insufficiently understood problem in fluid mechanics. Here, we address this challenge numerically using a kinematic model, and approximate the hydrodynamic interaction between particles by superposing velocity disturbances from rarefied gas flows past individual particles. The effect of electrostatic interactions among charged particles is also studied. As an application, we simulate the sedimentation of small dust clouds under Martian conditions, focusing on the 10$\,\unicode{x03BC}$m diameter fraction of ‘settled dust’. Our results show that under Martian conditions, dust clouds develop elongated tails during sedimentation, with up to 25 % of particles leaking from the bulk over a 10 minute period. Unlike Earth-based scenarios, the clouds do not break apart owing to the weaker hydrodynamic interactions in Mars’ thin atmosphere. By examining the interplay between hydrodynamic and electrostatic interactions, which influence particle leakage in opposite ways, we demonstrate that larger dust clouds are also likely to evolve with sustained tail formation. Fully suppressing particle leakage would require particle charges well above $10^4e$, levels unlikely to occur under typical Martian conditions. New analytical expressions are derived for the cloud settling velocity and tail evolution, providing theoretical insights and a foundation for future studies on particle dynamics in transition/rarefied environments.
The NutriLight system presents a novel dietary approach designed to enhance health communication, promote sustainable eating habits, and address limitations in existing dietary patterns. Using a traffic light scoring system, it simplifies dietary recommendations, making them more accessible and adaptable across diverse populations. Unlike rigid diets, NutriLight categorises foods into green, yellow, and red groups, encouraging balance rather than restriction. This flexibility allows for cultural adaptations, ensuring relevance in different dietary contexts while supporting planetary health. Additionally, NutriLight mitigates the risk of nutrient deficiencies by emphasising whole, minimally processed foods and reducing overconsumption of unhealthy options. While promising, its effectiveness depends on proper implementation, localised adaptation, and long-term evaluation to confirm its health benefits. By bridging the gap between nutritional science and practical application, NutriLight has the potential to serve as an effective tool in public health nutrition, fostering healthier and more sustainable dietary choices worldwide.
We investigate the dynamics of circular self-propelled particles in channel flow, modelled as squirmers using a two-dimensional lattice Boltzmann method. The simulations explore a wide range of parameters, including channel Reynolds numbers ($\textit{Re}_c$), squirmer Reynolds numbers ($\textit{Re}_s$) and squirmer-type factors ($\beta$). For a single squirmer, four motion regimes are identified: oscillatory motion confined to one side of the channel, oscillatory crossing of the channel centreline, stabilisation at a lateral equilibrium position with the squirmer tilted and stable upstream swimming near the channel centreline. For two squirmers, interactions produce not only these four corresponding regimes but also three additional ones: continuous collisions with repeated position exchanges, progressive separation and drifting apart and, most notably, the formation of a stable wedge-like conformation (regime D). A key finding is the emergence of regime D, which predominantly occurs for weak pullers ($\beta = 1$) and at moderate to high $\textit{Re}_c$ values. Hydrodynamic interactions align the squirmers with streamline bifurcations near the channel centreline, enabling stability despite transient oscillations. Additionally, the channel blockage ratio critically affects the range of $\textit{Re}_s$ values over which this regime occurs, highlighting the influence of geometric confinement. This study extends the understanding of squirmer dynamics, revealing how hydrodynamic interactions drive collective behaviours. The findings also offer insights into the design of self-propelled particles for biomedical applications and contribute to the theoretical framework for active matter systems. Future work will investigate three-dimensional effects and the stability conditions for spherical squirmers forming stable wedge-like conformations, further generalising these results.
Emotional eating, the tendency to eat in response to negative emotions, is rising among adolescents and linked to obesity and mental health issues. While negative life events contribute to emotional eating, the roles of self-control and social support remain unclear.
Aims
This study examined the relationship between negative life events and emotional eating in adolescents, testing self-control as a mediator and perceived social support as a moderator.
Method
A sample of 740 Chinese high school students (aged 14–18) completed validated measures of negative life events, self-control, perceived social support, and emotional eating. Data were analyzed using SPSS 25.0 (IBM Corp., Armonk, New York, USA)and PROCESS macro for mediation/moderation effects.
Results
Negative life events predicted higher emotional eating (β = 0.11, p < 0.01), while lower self-control mediated this relationship (β = −0.15, p < 0.001). Perceived social support moderated the association (β = −0.09, p < 0.05), weakening it among adolescents with stronger support.
Conclusions
Negative life events increase emotional eating, but self-control and social support play key roles. Interventions targeting these factors may reduce emotional eating and improve adolescent well-being.
Riboswitches are RNA elements with a defined structure found in noncoding sections of genes that allow the direct control of gene expression by the binding of small molecules functionally related to the gene product. In most cases, this is a metabolite in the same (typically biosynthetic) pathway as an enzyme (or transporter) encoded by the gene that is controlled. The structures of many riboswitches have been determined and this provides a large database of RNA structure and ligand binding. In this review, we extract general principles of RNA structure and the manner or ligand binding from this resource.
Internet addiction (IA) refers to excessive internet use that causes cognitive impairment or distress. Understanding the neurophysiological mechanisms underpinning IA is crucial for enabling an accurate diagnosis and informing treatment and prevention strategies. Despite the recent increase in studies examining the neurophysiological traits of IA, their findings often vary. To enhance the accuracy of identifying key neurophysiological characteristics of IA, this study used the phase lag index (PLI) and weighted PLI (WPLI) methods, which minimize volume conduction effects, to analyze the resting-state electroencephalography (EEG) functional connectivity. We further evaluated the reliability of the identified features for IA classification using various machine learning methods.
Methods
Ninety-two participants (42 with IA and 50 healthy controls (HCs)) were included. PLI and WPLI values for each participant were computed, and values exhibiting significant differences between the two groups were selected as features for the subsequent classification task.
Results
Support vector machine (SVM) achieved an 83% accuracy rate using PLI features and an improved 86% accuracy rate using WPLI features. t-test results showed analogous topographical patterns for both the WPLI and PLI. Numerous connections were identified within the delta and gamma frequency bands that exhibited significant differences between the two groups, with the IA group manifesting an elevated level of phase synchronization.
Conclusions
Functional connectivity analysis and machine learning algorithms can jointly distinguish participants with IA from HCs based on EEG data. PLI and WPLI have substantial potential as biomarkers for identifying the neurophysiological traits of IA.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
An increasing number of observational studies have reported associations between frailty and mental disorders, but the causality remains ambiguous.
Aims
To assess the bidirectional causal relationship between frailty and nine mental disorders.
Method
We conducted a bidirectional two-sample Mendelian randomisation on genome-wide association study summary data, to investigate causality between frailty and nine mental disorders. Causal effects were primarily estimated using inverse variance weighted method. Several secondary analyses were applied to verify the results. Cochran's Q-test and Mendelian randomisation Egger intercept were applied to evaluate heterogeneity and pleiotropy.
Results
Genetically determined frailty was significantly associated with increased risk of major depressive disorder (MDD) (odds ratio 1.86, 95% CI 1.36–2.53, P = 8.1 × 10−5), anxiety (odds ratio 2.76, 95% CI 1.56–4.90, P = 5.0 × 10−4), post-traumatic stress disorder (PTSD) (odds ratio 2.56, 95% CI 1.69–3.87, P = 9.9 × 10−6), neuroticism (β = 0.25, 95% CI 0.11–0.38, P = 3.3 × 10−4) and insomnia (β = 0.50, 95% CI 0.25–0.75, P = 1.1 × 10−4). Conversely, genetic liability to MDD, neuroticism, insomnia and suicide attempt significantly increased risk of frailty (MDD: β = 0.071, 95% CI 0.033–0.110, P = 2.8 × 10−4; neuroticism: β = 0.269, 95% CI 0.173–0.365, P = 3.4 × 10−8; insomnia: β = 0.160, 95% CI 0.141–0.179, P = 3.2 × 10−61; suicide attempt: β = 0.056, 95% CI 0.029–0.084, P = 3.4 × 10−5). There was a suggestive detrimental association of frailty on suicide attempt and an inverse relationship of subjective well-being on frailty.
Conclusions
Our findings show bidirectional causal associations between frailty and MDD, insomnia and neuroticism. Additionally, higher frailty levels are associated with anxiety and PTSD, and suicide attempts are correlated with increased frailty. Understanding these associations is crucial for the effective management of frailty and improvement of mental disorders.
We show that attention constraints on decision-makers create barriers to financial inclusion. Using administrative data on retail loan-screening processes, we find that attention-constrained loan officers exert less effort reviewing applicants of lower socioeconomic status (SES) and reject them more frequently. More importantly, when externally imposed increases in loan officers’ workloads tighten attention constraints, loan officers are even more prone to quickly reject low-SES applicants but quickly accept very high-SES applicants without careful review. Such selective attention allocation further widens the approval rate gap between high- and low-SES applicants—a unique prediction of this attention-based mechanism.
In laser systems requiring a flat-top distribution of beam intensity, beam smoothing is a critical technology for enhancing laser energy deposition onto the focal spot. The continuous phase modulator (CPM) is a key component in beam smoothing, as it introduces high-frequency continuous phase modulation across the laser beam profile. However, the presence of the CPM makes it challenging to measure and correct the wavefront aberration of the input laser beam effectively, leading to unwanted beam intensity distribution and bringing difficulty to the design of the CPM. To address this issue, we propose a deep learning enabled robust wavefront sensing (DLWS) method to achieve effective wavefront measurement and active aberration correction, thereby facilitating active beam smoothing using the CPM. The experimental results show that the average wavefront reconstruction error of the DLWS method is 0.04 μm in the root mean square, while the Shack–Hartmann wavefront sensor reconstruction error is 0.17 μm.
The exploration of molecular characteristics has emerged as a prominent trend to advance precision medicine. The utilization of genetic testing to guide therapy is integral to precision medicine. This study aims to investigate the potential patient populations for the reimbursement of next-generation sequencing (NGS) and assess the budget impact from the perspective of Taiwan’s single insurer, the National Health Insurance Administration.
Methods
To comprehend the scope for medicines with companion diagnostics (CDx) involved, we analyze the U.S. Food and Drug Administration-approved/cleared diagnostic tests, conduct a literature review to identify medicines approved by the European Medicines Agency that require a CDx, and identify the medicines with CDx involved covered by the National Health Insurance (NHI) in Taiwan. Subsequently, we explore the potential reimbursement indications for NGS testing and conduct a budget impact analysis to evaluate the expected financial impact for the NHI over a five-year period. Furthermore, sensitivity analyses are conducted to deal with uncertainty.
Results
We have compiled 13 cancer types for which NGS can serve as a companion diagnostic. These encompass non-small-cell lung cancer, colorectal cancer, breast cancer, ovarian cancer, biliary tract cancer, acute myeloid leukemia, acute lymphoblastic leukemia, melanoma, cholangiocarcinoma, prostate cancer, pancreatic cancer, gastrointestinal stromal tumor, and thyroid cancer/medullary thyroid cancer. The implementation of NGS reimbursement in NHI will benefit 25,000 to 30,000 patients undergoing targeted therapies. The projected incremental budget impact ranges from TWD570 million to TWD650 million (USD19 million to USD22 million) over five years.
Conclusions
This study focuses on evaluating the financial impact of incorporating NGS testing into NHI reimbursement for relevant cancer drug indications. The findings can serve as references for the planning of reimbursement policies. However, with the advancement of precision medicine, it is foreseeable that there will be a broader range of applications for NGS, and its cost will gradually decrease.
Ecological momentary assessment data consist of in-the-moment sampling several times per day aimed at capturing phenomena that are highly variable. When research questions are focused on the association between a construct measured repeatedly and an event that occurs sporadically over time interspersed between repeated measures, the data consist of correlated observed or censored times to an event. In such a case, specialized time-to-event models that account for correlated observations are required to properly assess the relationships under study. In the current study, we apply two time-to-event analysis techniques, proportional hazards, and accelerated failure time modeling, to data from a study of affective states and sexual behavior in depressed adolescents and illustrate differing interpretations from the models.
We study the melting process of a solid under microgravity, driven solely by lateral vibrations that are perpendicular to the applied temperature gradient due to the absence of gravity-induced convection. Using direct numerical simulations with the phase-field method, we examine two-dimensional vibration-induced melting in a square cavity over four orders of magnitude of vibrational Rayleigh numbers, $10^5\le Ra_{{vib}}\le 10^9$. Our results show that as melting progresses, the flow structure transitions from a periodic-circulation regime with diffusion-dominated heat transfer to a columnar regime with vibroconvection. The mean height of the liquid–solid interface follows a power-law dependency with time, $\bar {\xi } \sim \tilde t^{1/(2-2\alpha )}$, where $\alpha = 0$ in the periodic-circulation regime and $\alpha = 1/2$ in the columnar regime. We further observe that within the columnar regime, the morphological evolution of the liquid–solid interface is influenced by the interaction of columnar thermal plumes in the central regions and the peripheral flow near the sidewalls. Specifically, we offer a comprehensive analysis of the plume merging behaviour, which is governed by the aspect ratio ($\bar {\xi }$) of the liquid layer and the intensity of vibration, quantified by the effective vibrational Rayleigh number $Ra_{vib}^{eff}$. We identify the relationship between the number of columnar plumes $K_m$ and $Ra_{vib}^{eff}$, finding that $K_m \sim \bar {\xi }^{-1} (Ra_{vib}^{eff})^{\gamma }$ with the fitting scaling exponent $\gamma = 0.150 \pm 0.025$. We subsequently quantify the characteristics of the interface roughness amplitude evolution in microgravity vibroconvection. Our results indicate that the roughness amplitude exhibits a power-law dependence on the mean height of the liquid layer. Drawing from the Stefan boundary condition, we theoretically deduce this dependence under the assumption of a non-uniform heat flux distribution at the interface, where the theory is corroborated by our numerical simulations.
Rates of self-harm among children and young people (CYP) have been on the rise, presenting major public health concerns in Australia and worldwide. However, there is a scarcity of evidence relating to self-harm among CYP from culturally and linguistically diverse (CALD) backgrounds.
Aims
To analyse the relationship between self-harm-related mental health presentations of CYP to emergency departments and CALD status in South Western Sydney (SWS), Australia.
Method
We analysed electronic medical records of mental health-related emergency department presentations by CYP aged between 10 and up to 18 years in six public hospitals in the SWS region from January 2016 to March 2022. A multilevel logistic regression model was used on these data to assess the association between self-harm-related presentations and CALD status while adjusting for covariates and individual-level clustering.
Results
Self-harm accounted for 2457 (31.5%) of the 7789 mental health-related emergency department presentations by CYP; CYP from a CALD background accounted for only 8% (n = 198) of the self-harm-related presentations. CYP from the lowest two most socioeconomic disadvantaged areas made 63% (n = 1544) of the total self-harm-related presentations. Findings of the regression models showed that CYP from a CALD background (compared with those from non-CALD backgrounds) had 19% lower odds of self-harm (adjusted odds ratio 0.81, 95% CI 0.66–0.99).
Conclusions
Findings of this study provide insights into the self-harm-related mental health presentations and other critical clinical features related to CYP from CALD backgrounds that could better inform health service planning and policy to manage self-harm presentations and mental health problems among CYP.
Background: Mild behavioral impairment (MBI) in older people refers to a group of syndromes that are characterized primarily by clusters of neuropsychiatric symptoms without severe cognitive impairment, which is a high-risk population for dementia. Patients often experience a variety of symptoms and exhibit high heterogeneity in symptomatology across different individuals. Classifying the psychotic symptom characteristics of MBI patients aids in the implementation of precise interventions for the next steps.
Objectives: To explore the symptom characteristics of older people with MBI and to classify them based on their symptoms.
Methods: Using a multi-stage sampling Methods, the MBI-Checklist was employed to investigate symptom characteristics in 255 older people with MBI from 32 nursing homes in Fujian Province. Latent Class Analysis (LCA) was then employed to categorize these individuals based on their symptom profiles.
Results: The neuropsychiatric symptoms clusters in older people with MBI often present as a combination of lack of motivation and emotional dysregulation, lack of motivation and impulse control disorders, or emotional dysregulation and impulse control disorders; presentation of a single symptom cluster is relatively less common, accounting for 45.49%. Older people with MBI can be divided into 2 latent classes (P < 0.05) based on symptom characteristics. According to the conditional probability of each class, they were named the “high- level group’’ [211 (82.69%)] and the “low-level group’’[44 (17.31%)].
Discussion: As individuals with MBI are at high risk for developing dementia, early intervention can effectively delay or reduce the occurrence of dementia. Future interventions should be personalized based on the specific symptom characteristics of this population.
Introduction: Late-life depression (LLD) is associated with cognitive deficit with risk of future dementia. By examining the entropy of the spontaneous brain activity, we aimed to understand the neural mechanism pertaining to cognitive decline in LLD.
Methods: We collected MRI scans in older adults with LLD (n = 32), mild cognitive impairment [MCI (n = 25)] and normal cognitive function [NC, (n = 47)]. Multiscale entropy analysis (MSE) was applied to resting-state fMRI data. Under the scale factor (tau) 1 and 2, reliable separation of fMRI data and noise was achieved. We calculated the brain entropy in 90 brain regions based on automated anatomical atlas (AAL). Due to exploratory nature of this study, we presented data of group-wise comparison in brain entropy between LLD vs. NC, MCI vs. NC, and LLD and MCD with a p-value below 0.001.
Results: The mean Mini-Mental State Examination (MMSE) score of LLD and MCI was 27.9 and 25.6. Under tau 2, we found higher brain entropy of LLD in left globus pallidus than MCI (p = 0.002) and NC (p = 0,009). Higher brain entropy of LLD than NC was also found in left frontal superior gyrus, left middle superior gyrus, left amygdala and left inferior parietal gyrus. The only brain region with higher brain entropy in MCI than control was left posterior cingulum (p-value = 0.015). Under tau 1, higher brain entropy was also found in LLD than in MCI in right orbital part of medial frontal gyrus and left globus pallidus (p-value = 0.007 and 0.005).
Conclusions: Our result is consistent with prior hypothesis where higher brain entropy was found during early aging process as compensation. We found such phenomenon particular in left globus pallidus in LLD, which could be served as a discriminative brain region. Being a key region in reward system, we hypothesis such region may be associated with apathy and with unique pathway of cognitive decline in LLD. We will undertake subsequent analysis longitudinally in this cohort
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
Hydrogen sulfide (H2S) has been shown to play a significant role in oxidative stress across various tissues and cells; however, its role in sperm function remains poorly understood. This study aimed to investigate the protective effect of GYY4137, a slow-releasing H2S compound, on sperm damage induced by H2O2. We assessed the effects of GYY4137 on motility, viability, lipid peroxidation and caspase-3 activity in human spermatozoa in vitro following oxidative damage mediated by H2O2. Spermatozoa from 25 healthy men were selected using a density gradient centrifugation method and cultured in the presence or absence of 10 μM H2O2, followed by incubation with varying concentrations of GYY4137 (0.625–2.5 μM). After 24 h of incubation, sperm motility, viability, lipid peroxidation, and caspase-3 activity were evaluated. The results indicated that H2O2 adversely affected sperm parameters, reducing motility and viability, while increasing oxidative stress, as evidenced by elevated lipid peroxidation and caspase-3 activity. GYY4137 provided dose-dependent protection against H2O2-induced oxidative stress (OS). We concluded that supplementation with GYY4137 may offer antioxidant protection during in vitro sperm preparation for assisted reproductive technology.
High-resolution simulations of gravity currents in the lock-exchange configuration are conducted to study the flow within the head. The simulations exhibit the geometric features of the head as reported in the laboratory experiments and numerical simulations, and provide more detailed information on the flow within the head of a gravity current. The flow in the lower part of the head, where the lobes and clefts are forming at the leading edge, is qualitatively different from but interconnected to the flow in the upper part of the head, where steepening bulges are protruding from the upright surface above the clefts. Interestingly, regions of positive and negative streamwise vorticity are observed not only in the lower part of the head but also in the upper part of the head at staggered spanwise locations. We have shown that both the streamwise vorticity at the leading edge of the lobes in the lower part of the head and the streamwise vorticity at the steepening bulges in the upper part of the head are contributed from the twisting of spanwise vorticity into the streamwise direction, due to the geometric features of the lobes and the steepening bulges, and contributed from the baroclinic production of vorticity. Our results from visualization using tracers indicate that the ambient fluid ingested in and rising from the clefts is being swept towards the leading edge of a gravity current before being carried upwards from the leading edge to the upright surface above the left and right neighbouring lobes. Furthermore, the heavy fluid inside a lobe may descend towards the bottom boundary, move forward towards the leading edge and outwards towards the neighbouring clefts, and ultimately be carried upwards to the upright surface above the left and right neighbouring lobes. With the knowledge that the erosive power of a gravity current is concentrated in the head region, it is plausible that the bed material, once resuspended by a gravity current, may be lifted up away from the bottom boundary and be dispersed in both the streamwise and spanwise directions. The present study complements existing findings in the literature and provides new insights into the three-dimensional flow field within the head of a gravity current.
Certain rhythmic arterial pressure waves in humans and animals have been noticed for over one century. We found the novel and slowest arterial pressure waves in children following surgical repair for CHD, and examined their characteristics and clinical implications.
Methods:
We enrolled 212 children with 22 types of CHD within postoperative 48 h. We monitored haemodynamics (blood pressure, cardiac cycle efficiency, dP/dTmax), cerebral (ScO2), and renal (SrO2) oxygen saturation every 6 s. Electroencephalogram was continuously monitored. Mean blood flow velocity (Vm) of the middle cerebral artery was measured at 24 h.
Results:
We found the waves with a frequency of ∼ 90 s immediately following surgical repair in 46 patients in 12 types of CHD (21.7%), being most prevalent in patients with aortic arch abnormalities (Aorta Group, n = 24, 42.3%) or ventricular septal defect (Ventricular Septal Defect Group, n = 12, 23.5%). In Aorta and Ventricular Septal Defect Groups, the occurrence of the waves was associated with lower blood pressures, dP/dTmax, cardiac cycle efficiency, ScO2, SrO2, Vm, worse electroencephalogram background abnormalities, higher number of electroencephalogram sharp waves, and serum lactate (Ps <0.0001–0.07), and were accompanied with fluctuations of ScO2 and SrO2 in 80.6% and 69.6% of patients, respectively.
Conclusions:
The waves observed in children following cardiovascular surgery are the slowest ever reported, occurring most frequently in patients with aortic arch abnormalities or ventricular septal defect. While the occurrence of the waves was associated with statistically worse and fluctuated ScO2 and SrO2, worse systemic haemodynamics, and electroencephalogram abnormalities, at present these waves have no known clinical relevance.