We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study conducts experimental investigations into wake-induced vibration (WIV) of a circular cylinder placed downstream of an oscillating cylinder. Surprisingly, it is observed that the previously identified WIV phenomenon, characterized by a sustained increase in amplitude at higher reduced velocities, does not occur when the upstream cylinder oscillates at large amplitudes. Instead, a different phenomenon, which we refer to as the ‘wake-captured vibration’, becomes dominant. The experiments reveal a negative correlation between the vortex-induced vibration amplitude response of the upstream cylinder and the WIV amplitude response of the downstream cylinder. Through a quasi-steady and linear instability analysis, the study demonstrates that the previously proposed wake-displacement mechanism may not be applicable for predicting the cylinder WIV response in the wake of an oscillating body. This is because the lift force gradients across the wake, measured through stationary cylinder experiments, decrease significantly when the upstream cylinder vibrates at higher amplitudes. Consequently, actively controlled vibration experiments are conducted to systematically map the hydrodynamic properties of the downstream cylinder vibrating in the wake of an oscillating cylinder. The findings align with observations from free-vibration experiments, and help to explain the amplitude and frequency response of WIV. Additionally, wake visualization through particle image velocimetry is conducted to provide further insights into the complex wake and vortex–body interactions.
This article is devoted to the analysis of the parabolic–parabolic chemotaxis system with multi-components over $\mathbb{R}^2$. The optimal small initial condition on the global existence of solutions for multi-species chemotaxis model in the fully parabolic situation had not been attained as far as the author knows. In this paper, we prove that under the sub-critical mass condition, any solutions to conflict-free system exist globally. Moreover, the global existence of solutions to system with strong self-repelling effect has been discussed even for large initial data. The proof is based on the modified free energy functional and the Moser–Trudinger inequality for system.
Exploring the neural basis related to different mood states is a critical issue for understanding the pathophysiology underlying mood switching in bipolar disorder (BD), but research has been scarce and inconsistent.
Methods
Resting-state functional magnetic resonance imaging data were acquired from 162 patients with BD: 33 (hypo)manic, 64 euthymic, and 65 depressive, and 80 healthy controls (HCs). The differences of large-scale brain network functional connectivity (FC) between the four groups were compared and correlated with clinical characteristics. To validate the generalizability of our findings, we recruited a small longitudinal independent sample of BD patients (n = 11). In addition, we examined topological nodal properties across four groups as exploratory analysis.
Results
A specific strengthened pattern of network FC, predominantly involving the default mode network (DMN), was observed in (hypo)manic patients when compared with HCs and bipolar patients in other mood states. Longitudinal observation revealed an increase in several network FCs in patients during (hypo)manic episode. Both samples evidenced an increase in the FC between the DMN and ventral attention network, and between the DMN and limbic network (LN) related to (hypo)mania. The altered network connections were correlated with mania severity and positive affect. Bipolar depressive patients exhibited decreased FC within the LN compared with HCs. The exploratory analysis also revealed an increase in degree in (hypo)manic patients.
Conclusions
Our findings identify a distributed pattern of large-scale network disturbances in the unique context of (hypo)mania and thus provide new evidence for our understanding of the neural mechanism of BD.
One of the most common harmful mites in edible fungi is Histiostoma feroniarum Dufour (Acaridida: Histiostomatidae), a fungivorous astigmatid mite that feeds on hyphae and fruiting bodies, thereby transmitting pathogens. This study examined the effects of seven constant temperatures and 10 types of mushrooms on the growth and development of H. feroniarum, as well as its host preference. Developmental time for the total immature stages was significantly affected by the type of mushroom species, ranging from 4.3 ± 0.4 days (reared on Pleurotus eryngii var. tuoliensis Mou at 28°C) to 17.1 ± 2.3 days (reared on Auricularia polytricha Sacc. at 19°C). The temperature was a major factor in the formation of facultative heteromorphic deutonymphs (hypopi). The mite entered the hypopus stage when the temperature dropped to 16°C or rose above 31°C. The growth and development of this mite were significantly influenced by the type of species and variety of mushrooms. Moreover, the fungivorous astigmatid mite preferred to feed on the ‘Wuxiang No. 1’ strain of Lentinula edodes (Berk.) Pegler and the ‘Gaowenxiu’ strain of P. pulmonarius (Fr.) Quél., with a shorter development period compared with that of feeding on other strains. These results therefore quantify the effect of host type and temperature on fungivorous astigmatid mite growth and development rates, and provide a reference for applying mushroom cultivar resistance to biological pest control.
where $\Omega =\mathbb {R}^2$ or $\Omega =B_R(0)\subset \mathbb {R}^2$ supplemented with homogeneous Neumann boundary conditions, $\kappa _i,\chi _i>0,$$i=1,2$. The global existence remains open for the fully parabolic case as far as the author knows, while the existence of global solution was known for the parabolic-elliptic reduction with the second equation replaced by $0=\Delta v-v+u_1+u_2$ or $0=\Delta v+u_1+u_2$. In this paper, we prove that there exists a global solution if the initial masses satisfy the certain sub-criticality condition. The proof is based on a version of the Moser–Trudinger type inequality for system in two dimensions.
In order to improve the working performance of the lower limb rehabilitation robot and the safety of the trained object, the mechanical characteristics of a cable-driven lower limb rehabilitation robot (CDLR) are studied. The dynamic model of the designed CDLR was established. Four kinds of cable tension optimization algorithms were proposed to obtain a good rehabilitation training effect, and the quality of the feasible workspace of the CDLR was analyzed. Finally, a real-time evaluation index of the cable tension optimization algorithms was given to measure the calculation speed of the optimization algorithms. The numerical research results were provided to confirm the characteristics of the four kinds of the optimization algorithms. The research results provide a basis for the follow-up research on the safety and compliance control strategy of the CDLR system.
Echinococcus granulosus sensu lato has complex defence mechanisms that protect it from the anti-parasitic immune response for long periods. Echinococcus granulosus cyst fluid (EgCF) is involved in the immune escape. Nevertheless, whether and how EgCF modulates the inflammatory response in macrophages remains poorly understood. Here, real-time polymerase chain reaction and enzyme-linked immunosorbent assay revealed that EgCF could markedly attenuate the lipopolysaccharide (LPS)-induced production of pro-inflammatory factors including tumour necrosis factor-α, interleukin (IL)-12 and IL-6 but increase the expression of IL-10 at mRNA and protein levels in mouse peritoneal macrophages and RAW 264.7 cells. Mechanically, western blotting and immunofluorescence assay showed that EgCF abolished the activation of nuclear factor (NF)-κB p65, p38 mitogen-activated protein kinase (MAPK) and ERK1/2 signalling pathways by LPS stimulation in mouse macrophages. EgCF's anti-inflammatory role was at least partly contributed by promoting proteasomal degradation of the critical adaptor TRAF6. Moreover, the EgCF-promoted anti-inflammatory response and TRAF6 proteasomal degradation were conserved in human THP-1 macrophages. These findings collectively reveal a novel mechanism by which EgCF suppresses inflammatory responses by inhibiting TRAF6 and the downstream activation of NF-κB and MAPK signalling in both human and mouse macrophages, providing new insights into the molecular mechanisms underlying the E. granulosus-induced immune evasion.
Mach reflection subjected to the influence of an upstream shock wave from the same side is studied here. This situation occurs when two incident shock waves induced by a double wedge reflect at the same point of the reflecting surface and when the downstream incident shock wave is stronger than the upstream one. A shock polar analysis is used to show that this configuration produces an inverted Mach stem and a type IV shock interference between the Mach stem and the upstream shock wave. This shock interference produces a jet that divides the flow stream downstream of the Mach stem into two ducts with different sonic throats, thus complicating the mechanism by which the Mach stem size is determined. A transition analysis shows that the Mach reflection of the downstream shock wave is promoted by the upstream one. Computational fluid dynamics is used to assess the flow pattern anticipated by shock polar analysis and demonstrates how the heights of Mach stem and jet depend on the inflow Mach number and wedge turning angle.
The dynamical stability of the cable-driven lower-limb rehabilitation training robot (CLLRTR) is a crucial question. Based on the established dynamics model of CLLRTR, the solution to the wrench closure of the under-constrained system is presented. Secondly, the stability index of CLLRTR is proposed by the Krasovski method. Finally, in order to analyze the stability distribution of CLLRTR in the workspace, the stability evaluation index in the workspace is calculated using the eigenvalue decomposition method. The stability distribution laws of CLLRTR are further verified by the experimental study. The results provide references for studying trajectory planning and anti-pendulum control of CLLRTR.
Increased intake of vegetables and fruits has been associated with reduced risk of tuberculosis infection. Vegetables and fruits exert immunoregulatory effects; however, it is not clear whether vegetables and fruits have an adjuvant treatment effect on tuberculosis. Between 2009 and 2013, a hospital-based cohort study was conducted in Linyi, Shandong Province, China. Treatment outcome was ascertained by sputum smear and chest computerised tomography, and dietary intake was assessed by a semi-quantitative FFQ. The dietary questionnaire was conducted at the end of month 2 of treatment initiation. Participants recalled their dietary intake of the previous 2 months. A total of 2309 patients were enrolled in this study. After 6 months of treatment, 2099 patients were successfully treated and 210 were uncured. In multivariate models, higher intake of total vegetables and fruits (OR 0·70; 95 % CI 0·49, 0·99), total vegetables (OR 0·68; 95 % CI 0·48, 0·97), dark-coloured vegetables (OR 0·61; 95 % CI 0·43, 0·86) and light-coloured vegetables (OR 0·67; 95 % CI 0·48, 0·95) were associated with reduced failure rate of tuberculosis treatment. No association was found between total fruit intake and reduced failure rate of tuberculosis treatment (OR 0·98; 95 % CI 0·70, 1·37). High intake of total vegetables and fruits, especially vegetables, is associated with lower risk of failure of tuberculosis treatment in pulmonary tuberculosis patients. The results provide important information for dietary guidelines during tuberculosis treatment.
To revise an abbreviated version of the Silhouettes subtest of the Visual Object and Space Perception (VOSP) battery in order to recognize mild cognitive impairment (MCI) and determine the optimal cutoffs to differentiate among cognitively normal controls (NC), MCI, and Alzheimer’s Disease (AD) in the Chinese elderly.
Design:
A cross-sectional validation study.
Setting:
Huashan Hospital, Shanghai, China.
Subjects:
A total of 591 participants: Individuals with MCI (n = 211), AD (n = 139) and NC (n = 241) were recruited from the Memory Clinic, Huashan Hospital, Shanghai, China.
Methods:
Baseline neuropsychological battery (including VOSP) scores were collected from firsthand data. An abbreviated version of silhouettes test (Silhouettes-A) was revised from the original English version more suitable for the elderly, including eight silhouettes of animals and seven silhouettes of inanimate objects, with a score ranging from 0 to 15.
Results:
Silhouettes-A was an effective test to screen MCI in the Chinese elderly with good sensitivity and specificity, similar to the Montreal cognitive assessment and superior to other single tests reflecting language, spatial, or executive function. However, it had no advantage in distinguishing MCI from AD. The corresponding optimal cutoff scores of Silhouettes-A were 10 for screening MCI and 8 for AD.
Conclusion:
Silhouettes-A is a quick, simple, sensitive, and dependable cognitive test to distinguish among NC, MCI, and AD patients.
Marine Oxygen Isotope Stage (MIS) 2, with its profound environmental and climatic changes from before the last glacial maximum (LGM) to the last deglaciation, is an ideal period for understanding the evolution of the East Asian summer monsoon (EASM) and Indian summer monsoon (ISM), two Asian monsoon sub-systems. With 875 stable oxygen isotope ratios and 43 230Th dates from stalagmites in Sanxing Cave, southwestern China, we construct and interpret a new, replicated, Asian summer monsoon (ASM) record covering 30.9–9.7 ka with decadal resolution. δ18O records from this site and other reported Chinese caves display similar long-term orbitally dominated trends and synchronous millennial-scale strong and weak monsoonal events associated with climate changes in high northern latitudes. Interestingly, Sanxing δ18O and Arabian Sea records show a weakening ISM from 22 to 17 ka, while the Hulu and Qingtian records from East and Central China express a 3-ka intensifying EASM from 20 to 17 ka. This decoupling between EASM and ISM may be due to different sensitivities of the two ASM sub-systems in response to internal feedback mechanisms associated with the complex geographical or land-ocean configurations.
A kind of nickel–aluminum bronze (Cu–10Al–4Fe–4Ni) prepared by centrifugal casting (CC) and gravity casting (GC), respectively, were investigated. The results indicate that CC alloy, which is totally different from GC alloy, consists of α, κI, κII, κIII, κIV, and β′ phases and the microstructures of CC alloy shows nonuniformities from external to internal layer mainly because the distribution of iron and nickel are influenced by centrifugal force. Besides, it is noted that comprehensive mechanical properties of CC alloy are superior to those of GC alloy. Additionally, heat treatments were performed on CC alloy. The results demonstrate the optimal heat treatment is aging at 450 °C/1 h by air cooling after solution treated at 890 °C/1 h by water quench. The ultimate tensile strength and hardness are increased by about 10% and 56%, respectively, and wear resistance is also greatly improved. However, the elongation is decreased by 53%.
The Montreal Cognitive Assessment (MoCA) is used for screening mild cognitive impairment (MCI), and the Beijing version (MoCA-BJ) is widely used in China. We aimed to develop a computerized tool for MoCA-BJ (MoCA-CC).
Methods:
MoCA-CC used person-machine interaction instead of patient-to-physician interaction; other aspects such as the scoring system did not differ from the original test. MoCA-CC, MoCA-BJ and routine neuropsychological tests were administered to 181 elderly participants (MCI = 96, normal controls [NC] = 85).
Results:
A total of 176 (97.24%) participants were evaluated successfully by MoCA-CC. Cronbach's α for MoCA-CC was 0.72. The test–retest reliability (retesting after six weeks) was good (intraclass correlation coefficient = 0.82; P < 0.001). Significant differences were observed in total scores (t = 9.38, P < 0.001) and individual item scores (t = 2.18–8.62, P < 0.05) between the NC and MCI groups, except for the score for “Naming” (t = 0.24, P = 0.81). The MoCA-CC total scores were highly correlated with the MoCA-BJ total scores (r = 0.93, P < 0.001) in the MCI participants. The area under receiver–operator curve for the prediction of MCI was 0.97 (95% confidence interval = 0.95–1.00). At the optimal cut-off score of 25/26, MoCA-CC demonstrated 95.8% sensitivity and 87.1% specificity.
Conclusion:
The MoCA-CC tool developed here has several advantages over the paper-pencil method and is reliable for screening MCI in elderly Chinese individuals, especially in the primary clinical setting. It needs to be validated in other diverse and larger populations.
This practically-oriented, all-inclusive guide covers all the major enabling techniques for current and next-generation cellular communications and wireless networking systems. Technologies covered include CDMA, OFDM, UWB, turbo and LDPC coding, smart antennas, wireless ad hoc and sensor networks, MIMO, and cognitive radios, providing readers with everything they need to master wireless systems design in a single volume. Uniquely, a detailed introduction to the properties, design, and selection of RF subsystems and antennas is provided, giving readers a clear overview of the whole wireless system. It is also the first textbook to include a complete introduction to speech coders and video coders used in wireless systems. Richly illustrated with over 400 figures, and with a unique emphasis on practical and state-of-the-art techniques in system design, rather than on the mathematical foundations, this book is ideal for graduate students and researchers in wireless communications, as well as for wireless and telecom engineers.
Wireless channels suffer from time-varying impairments such as multipath fading, interference, and noise. Diversity, such as time, frequency, space, polarization, or angle diversity, is typically used to mitigate these impairments. Diversity gain is achieved by receiving independent-fading replicas of the signal.
The multiple antenna system employs multiple antennas at either the transmitter or the receiver, and it can be either multiple-input single-output (MISO) for beamforming or transmit diversity at the transmitter, single-input multiple-output (SIMO) for diversity combining at the receiver, or MIMO, depending on the numbers of transmit and receive antennas. The MISO, SIMO, and MIMO channel models can be generated by using the angle-delay scattering function.
Multiple antenna systems are generally grouped as smart antenna systems and MIMO systems. A smart antenna system is a subsystem that contains multiple antennas; based on the spatial diversity and signal processing, it significantly increases the performance of wireless communication systems. Direction-finding and beamforming are the two most fundamental topics of smart antennas. Direction-finding is used to estimate the number of emitting sources and their DoAs, while beamforming is used to estimate the signal-of-interest (SOI) in the presence of interference.
A MIMO system consists of multiple antennas at both the transmitter and the receiver. They are typically used for transmit diversity and spatial multiplexing. Spatial multiplexing can maximize the system capacity by transmitting at each transmit antenna a different bitstream.
The term microwaves is used to describe electromagnetic waves with frequencies from 300 MHz to 300 GHz, corresponding to wavelengths in free space from 1 m to 1 mm. Within the microwave range, from 30 GHz to 300 GHz the wavelengths are between 1 mm and 10 mm, and hence these waves are known as millimeter waves. Below 300 MHz the spectrum of electromagnetic waves is known as the radio frequency (RF) spectrum, while above the microwave spectrum are the infrared, visible optical, ultraviolet, and x-ray spectrums. Wireless communications uses only the electromagnetic waves in the range of the microwave and RF spectrums. In the wireless communications literature, the term RF is often used to represent the entire RF and microwave spectrums.
Receiver performance requirements
The requirements on RF receivers are typically more demanding than those on transmitters. In addition to the requirements on gain and noise figure, the receiver must have:
A good sensitivity to the minimum power at the antenna for a given BER requirement. For example, the GSM standard requires a reception dynamic range from −102 dBm to −15 dBm, IEEE 802.11g requires a reception range of −92 dBm to −20 dBm, for WCDMA it is −117 to −25 dBm (before spreading), for CDMA2000 it is −117 dBm to −30 dBm, and for WideMedia it is −80.8 dBm/MHz (or −72.4 dBm/MHz at highest speed) to -41.25 dBm/MHz. For multiple data rates, a higher data rate requires a higher sensitivity, since it requires a larger SNR.
UWB technology, also known as impulse radio, was first used to transmit Morse codes by Marconi in 1900 through the transatlantic telegraph. Modern UWB technology has been used for radar and communications since the 1960s. Like CDMA systems, early UWB systems were designed for military covert radar and communications. The early applications of UWB technology were primarily related to radar, driven by the fine-ranging resolution that comes with large bandwidth. UWB technology for wireless communications was pioneered by Scholtz. With the intent of operating UWB in an unlicensed mode that overlaps licensed bands, the FCC issued rules under the FCC Rules and Regulations Part 15 for UWB operation in February 2002.
The FCC defined a UWB transmitter as “an intentional radiator that, at any point in time, has a fractional bandwidth equal to or greater than 0.20, or has a UWB bandwidth equal to or greater than 500 MHz, regardless of the fractional bandwidth”. “The UWB bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission, as based on the complete transmission system including the antenna.”
According to the FCC regulations, the transmitter sends pulses with a bandwidth of at least 500 MHz that is within the band 3.1 to 10.6 GHz, for output power densities below −41.25 dBm/MHz. The FCC Part 15 limit of 500 µV/m at 3 meters is equivalent to an effective isotropic radiated power (EIRP) of −41.25 dBm/MHz.
Spread spectrum communications was originally used in the military for the purpose of interference rejection and enciphering. In digital cellular communications, spread spectrum modulation is used as a multiple-access technique. Spectrum spreading is mainly performed by one of the following three schemes.
Direct sequence (DS): Data is spread and the carrier frequency is fixed.
Frequency hopping (FH): Data is directly modulated and the carrier frequency is spread by channel hopping.
Time hopping (TH): Signal transmission is randomized in time.
The first two schemes are known as spectral spreading, and are introduced in this chapter. Time hopping is known as temporal spreading, and will be introduced in Chapter 20. Spectrum spreading provides frequency diversity, low PSD of the transmitted signal, and reduced band-limited interference, while temporal spreading has the advantage of time diversity, low instantaneous power of the transmitted signals, and reduced impulse interference.
CDMA is a spread spectrum modulation technology in which all users occupy the same time and frequency, and they can be separated by their specific codes. For DS-CDMA systems, at the BS, the baseband bitstream for each MS is first mapped onto M-ary symbols such as QPSK symbols; each of the I and Q signals is then spread by multiplying a spreading code and then a scrambling code. The spread signals for all MSs are then amplified to their respective power, summed, modulated to the specified band, and then transmitted.