We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This work investigates the effect of surface roughness on cylinder flows in the postcritical regime and reexamines whether the roughness Reynolds number ($Re_{k_s}$) primarily governs the aerodynamic behaviour. It has been motivated by limitations of many previous investigations, containing occasionally contradictory findings. In particular, many past studies were conducted with relatively high blockage ratios and low cylinder aspect ratios. Both of these factors appear to have non-negligible effects on flow behaviour, and particularly fluctuating quantities such as the standard deviation of the lift coefficient. This study employs a 5 % blockage ratio and a span-to-diameter ratio of 10. Cylinders of different relative surface roughness ratios ($k_s/D$), ranging from $1.1\times 10^{-3}$ to $3\times 10^{-3}$, were investigated at Reynolds numbers up to $6.8 \times 10^5$ and $Re_{k_s}$ up to 2200. It is found that the base pressure coefficient, drag coefficient, Strouhal number, spanwise correlation length of lift and the standard deviation of the lift coefficient are well described by $Re_{k_s}$ in postcritical flows. However, roughness does have an effect on the minimum surface pressure coefficient (near separation) that does not collapse with $Re_{k_s}$. The universal Strouhal number proposed by Bearman (Annu. Rev. Fluid Mech., vol. 16, 1984, pp. 195–222) appears to be nearly constant over the range of $Re_{k_s}$ studied, spanning the subcritical through postcritical regimes. Frequencies in the separating shear layers are found to be an order of magnitude lower than the power law predictions for separating shear layers of smooth cylinders.
This paper demonstrates experimentally that imposed periodic forcing can significantly alter the global flow characteristics of the flow over a double backward-facing step. The geometry consists of two equal height steps spaced up to eight step heights apart. A periodic zero-mass flux jet located at the first step's top corner was issued at frequencies ranging from below the step-mode instability frequency up to approximately five times the shear-layer instability frequency. Reattachment of the flow onto the first step was achieved for step separations as low as three single-step heights with imposed forcing; significantly shorter than the five single-step heights that occurred without forcing. A significant reduction in mean base pressure on the first step, and increase on the second step, occurred for low forcing frequencies. Even for large step separations, the effect of forcing on the flow persisted sufficiently far downstream to appreciably influence the development of the second recirculation zone. Importantly, previous forced single and unforced double backward-facing step flows provide reference cases to examine and discuss similarities and differences. This study offers insight into possibilities and potential outcomes of flow control for applications ranging from the drag reduction of ground vehicles such as pickup trucks, to enhanced mixing in industrial processes.
The backward-facing step is perhaps the quintessential geometry used to study separated flow. Extensive previous research has quantified its detailed flow characteristics. However, often regions of separated flow do not exist in isolation; rather, interaction occurs between multiple regions. This motivated an experimental investigation into the time-averaged and dynamic flow features of a double backward-facing step, covering separations of zero to eight step heights between equal-height steps. Three flow regimes are identified. A single reattachment regime occurs for separations of less than four step heights, perhaps remarkable for the lack of variation in key flow characteristics from a single backward-facing step response. Next, an intermediate regime is identified for a separation of four step heights. In this case, the flow does not yet reattach on the first step, although significant differences in reattachment length, surface pressure on the vertical step faces and turbulence statistics occur. Finally, for greater step separations, a double reattachment regime, with reattachment on both steps, is identified. Downwash, induced by the first recirculation zone, reduces the reattachment length and turbulent fluctuations of the second recirculation zone. The surface pressure on the first-step vertical face is reduced, seemingly a result of an upstream influence due to the low pressure in the second-step recirculation zone. Detailed characterisation of the regimes offers insight into the fundamental interaction of regions of separated flow, revealing aspects of complex dynamics relevant to a broad range of practical scenarios.
Non-communicable diseases (NCD) such as type-2 diabetes and CVD are now highly prevalent in both developed and developing countries. Evidence from both human and animal studies shows that early-life nutrition is an important determinant of NCD risk in later life. The mechanism by which the early-life environment influences future disease risk has been suggested to include the altered epigenetic regulation of gene expression. Epigenetic processes regulate the accessibility of genes to the cellular proteins that control gene transcription, determining where and when a gene is switched on and its level of activity. Epigenetic processes not only play a central role in regulating gene expression but also allow an organism to adapt to the environment. In this review, we will focus on how both maternal and paternal nutrition can alter the epigenome and the evidence that these changes are causally involved in determining future disease risk.
Better indicators of prognosis are needed to personalise post-traumatic stress disorder (PTSD) treatments.
Aims
We aimed to evaluate early symptom reduction as a predictor of better outcome and examine predictors of early response.
Method
Patients with PTSD (N = 134) received sertraline or prolonged exposure in a randomised trial. Early response was defined as 20% PTSD symptom reduction by session two and good end-state functioning defined as non-clinical levels of PTSD, depression and anxiety.
Results
Early response rates were similar in prolonged exposure and sertraline (40 and 42%), but in sertraline only, early responders were four times more likely to achieve good end-state functioning at post-treatment (Number Needed to Treat = 1.8, 95% CI 1.28–3.00) and final follow-up (Number Needed to Treat = 3.1, 95% CI 1.68–16.71). Better outcome expectations of sertraline also predicted higher likelihood of early response.
Conclusions
Higher expectancy of sertraline coupled with early response may produce a cascade-like effect for optimal conditions for long-term symptom reduction. Therefore, assessing expectations and providing clear treatment rationales may optimise sertraline effects.
Submerged artificial surface imitates newly available habitat for settlement of marine fauna. It also enables study of the timing of benthic larval settlement. Such knowledge is important if the model of possible recovery after disturbance in protected areas is to be assessed. During this study recruitment of sessile benthic invertebrate fauna at spatial and temporal scales was investigated using artificial panels submerged in the Skomer Marine Nature Reserve (Wales, UK). Panels were exchanged monthly between May 2009 and September 2011 (with the exclusion of winter time). Recruitment was highly variable with regard to time and distribution; abundance and number of recruiting species varied significantly between sites (about 2 km apart from each other), depths (6 and 12 m), position on panels (top or underside) and years without any obvious trends. The highest number of individuals and highest values of species richness were at Bernies Rocks, at the greater depth and on the underside surface of panels. Bryozoans were the dominant taxon on panels in each studied year and month. Most macrofaunal species noted on panels exhibit a colonial life strategy with short-lived, non-feeding larval stage. Although many species settle all year round, levels of settlement usually peak in summer months, showing a seasonal recruitment pattern (Bugula fulva, Spirobranchus triqueter, Chorizopora brongniarti and Escharoides coccinea). Some species had a pronounced settlement peak in spring (e.g. Electra pilosa and Balanus crenatus).