We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Depression is a complex mental health disorder with highly heterogeneous symptoms that vary significantly across individuals, influenced by various factors, including sex and regional contexts. Network analysis is an analytical method that provides a robust framework for evaluating the heterogeneity of depressive symptoms and identifying their potential clinical implications.
Objective:
To investigate sex-specific differences in the network structures of depressive symptoms in Asian patients diagnosed with depressive disorders, using data from the Research on Asian Psychotropic Prescription Patterns for Antidepressants, Phase 3, which was conducted in 2023.
Methods:
A network analysis of 10 depressive symptoms defined according to the National Institute for Health and Care Excellence guidelines was performed. The sex-specific differences in the network structures of the depressive symptoms were examined using the Network Comparison Test. Subgroup analysis of the sex-specific differences in the network structures was performed according to geographical region classifications, including East Asia, Southeast Asia, and South or West Asia.
Results:
A total of 998 men and 1,915 women with depression were analysed in this study. The analyses showed that all 10 depressive symptoms were grouped into a single cluster. Low self-confidence and loss of interest emerged as the most central nodes for men and women, respectively. In addition, a significant difference in global strength invariance was observed between the networks. In the regional subgroup analysis, only East Asian men showed two distinct clustering patterns. In addition, significant differences in global strength and network structure were observed only between East Asian men and women.
Conclusion:
The study highlights the sex-specific differences in depressive symptom networks across Asian countries. The results revealed that low self-confidence and loss of interest are the main symptoms of depression in Asian men and women, respectively. The network connections were more localised in men, whereas women showed a more diverse network. Among the Asian subgroups analysed, only East Asians exhibited significant differences in network structure. The considerable effects of neurovegetative symptoms in men may indicate potential neurobiological underpinnings of depression in the East Asian population.
The study aims were to present in vitro susceptibilities of clinical isolates from Gram-negative bacteria bloodstream infections (GNBSI) collected in China. GNBSI isolates were collected from 18 tertiary hospitals in 7 regions of China from 2018 to 2020. Minimum inhibitory concentrations were assessed using a Trek Diagnostic System. Susceptibility was determined using CLSI broth microdilution, and breakpoints were interpreted using CLSI M100 (2021). A total of 1,815 GNBSI strains were collected, with E. coli (42.4%) and Klebsiella pneumoniae (28.6%) being the most prevalent species, followed by P. aeruginosa (6.7%). Susceptibility analyses revealed low susceptibilities (<40%) of ESBL-producing E. coli and K. pneumonia to third-/fourth-generation cephalosporins, monobactamases, and fluoroquinolones. High susceptibilities to colistin (95.0%) and amikacin (81.3%) were found for K. pneumoniae, while Acinetobacter baumannii exhibited a high susceptibility (99.2%) to colistin but a low susceptibility to other antimicrobials (<27.5%). Isolates from ICUs displayed lower drug susceptibility rates of K. pneumoniae and A. baumannii than isolates from non-ICUs (all P < 0.05). Carbapenem-resistant and ESBL-producing K. pneumoniae detection was different across regions (both P < 0.05). E. coli and K. pneumoniae were major contributors to GNBSI, while A. baumannii exhibited severe drug resistance in isolates obtained from ICU departments.
The school–vacation cycle may have impacts on the psychological states of adolescents. However, little evidence illustrates how transition from school to vacation impacts students’ psychological states (e.g. depression and anxiety).
Aims
To explore the changing patterns of depression and anxiety symptoms among adolescent students within a school–vacation transition and to provide insights for prevention or intervention targets.
Method
Social demographic data and depression and anxiety symptoms were measured from 1380 adolescent students during the school year (age: 13.8 ± 0.88) and 1100 students during the summer vacation (age: 14.2 ± 0.93) in China. Multilevel mixed-effect models were used to examine the changes in depression and anxiety levels and the associated influencing factors. Network analysis was used to explore the symptom network structures of depression and anxiety during school and vacation.
Results
Depression and anxiety symptoms significantly decreased during the vacation compared to the school period. Being female, higher age and with lower mother's educational level were identified as longitudinal risk factors. Interaction effects were found between group (school versus vacation) and the father's educational level as well as grade. Network analyses demonstrated that the anxiety symptoms, including ‘Nervous’, ‘Control worry’ and ‘Relax’ were the most central symptoms at both times. Psychomotor disturbance, including ‘Restless’, ‘Nervous’ and ‘Motor’, bridged depression and anxiety symptoms. The central and bridge symptoms showed variation across the school vacation.
Conclusions
The school–vacation transition had an impact on students’ depression and anxiety symptoms. Prevention and intervention strategies for adolescents’ depression and anxiety during school and vacation periods should be differentially developed.
Investigations are conducted on the effect of wall proximity on the flow around a cylinder under an axial magnetic field, using the electrical potential probe technology to measure the velocity of liquid metal flow. The study focused on the impact of the inlet velocity of the fluid, the magnetic field and wall proximity on the characteristics of velocity fields, particularly on the vortex-shedding mode. Based on different magnitudes of the magnetic field and the distance from the cylinder to the duct wall, three types of vortex-shedding modes are identified, (I) shear layer oscillation state, (II) quasi-two-dimensional vortex-shedding states and (III) transition of the magnetohydrodynamic to hydrodynamic Kármán street. The transitions between these modes are analysed in detail. The experimental results show that the weak wall-proximity effect leads to the formation of the Kármán vortex street, while a reverse Kármán vortex street and secondary vortices emerge under a strong wall-proximity effect. It is noticed that the Kelvin–Helmholtz instability drives vortex shedding under regime I, leading to an increase in the Strouhal number (St) with stronger magnetic fields. Additionally, under a strong axial magnetic field, the wall-proximity effect (‘Shercliff layer effect’) promotes the instability of shear layers on both sides of the cylinder. These unique coupling effects are validated by variations in modal coefficients and energy proportions under different vortex-shedding regimes using the proper orthogonal decomposition method.
The liver has multiple functions such as detoxification, metabolism, synthesis and storage. Folate is a water-soluble vitamin B9, which participates in one-carbon transfer reactions, maintains methylation capacity and improves oxidative stress. Folic acid is a synthetic form commonly used as a dietary supplement. The liver is the main organ for storing and metabolising folate/folic acid, and the role of folate/folic acid in liver diseases has been widely studied. Deficiency of folate results in methylation capacity dysfunction and can induce liver disorders. However, adverse effects of excessive use of folic acid on the liver have also been reported. This review aims to explore the mechanism of folate/folic acid in different liver diseases, promote further research on folate/folic acid and contribute to its rational clinical application.
There is an unavoidable time offset between the camera stream and the inertial measurement unit (IMU) data due to the sensor triggering and transmission delays, which will seriously affect the accuracy of visual-inertial odometry (VIO). A novel online time calibration framework via double-stage EKF for VIO is proposed in this paper. First, the first-stage complementary Kalman filter is constructed by adapting the complementary characteristics between the accelerometer and the gyroscope in the IMU, where the rotation result predicted by the gyroscope is corrected through the measurement of the accelerometer so that the IMU can output a more accurate initial pose. Second, the unknown time offset is added to the state vector of the VIO system. The estimated pose of IMU is used as the prediction information, and the reprojection error of multiple cameras on the same feature point is used as the constraint information. During the operation of the VIO system, the time offset is continuously calculated and superimposed on the IMU timestamp to obtain the data synchronized by the IMU and the camera. The Schur complement model is used to marginalize the camera state that carries less information in the system state, avoiding the loss of prior information between images, and improving the accuracy of camera pose estimation. Finally, the effectiveness of proposed algorithm is verified using the EuRoC dataset and the real experimental data.
Despite extensive research into the neural basis of autism spectrum disorder (ASD), the presence of substantial biological and clinical heterogeneity among diagnosed individuals remains a major barrier. Commonly used case‒control designs assume homogeneity among subjects, which limits their ability to identify biological heterogeneity, while normative modeling pinpoints deviations from typical functional network development at individual level.
Methods
Using a world-wide multi-site database known as Autism Brain Imaging Data Exchange, we analyzed individuals with ASD and typically developed (TD) controls (total n = 1218) aged 5–40 years, generating individualized whole-brain network functional connectivity (FC) maps of age-related atypicality in ASD. We then used local polynomial regression to estimate a networkwise normative model of development and explored correlations between ASD symptoms and brain networks.
Results
We identified a subset exhibiting highly atypical individual-level FC, exceeding 2 standard deviation from the normative value. We also identified clinically relevant networks (mainly default mode network) at cohort level, since the outlier rates decreased with age in TD participants, but increased in those with autism. Moreover, deviations were linked to severity of repetitive behaviors and social communication symptoms.
Conclusions
Individuals with ASD exhibit distinct, highly individualized trajectories of brain functional network development. In addition, distinct developmental trajectories were observed among ASD and TD individuals, suggesting that it may be challenging to identify true differences in network characteristics by comparing young children with ASD to their TD peers. This study enhances understanding of the biological heterogeneity of the disorder and can inform precision medicine.
Accurately predicting neurosyphilis prior to a lumbar puncture (LP) is critical for the prompt management of neurosyphilis. However, a valid and reliable model for this purpose is still lacking. This study aimed to develop a nomogram for the accurate identification of neurosyphilis in patients with syphilis. The training cohort included 9,504 syphilis patients who underwent initial neurosyphilis evaluation between 2009 and 2020, while the validation cohort comprised 526 patients whose data were prospectively collected from January 2021 to September 2021. Neurosyphilis was observed in 35.8% (3,400/9,504) of the training cohort and 37.6% (198/526) of the validation cohort. The nomogram incorporated factors such as age, male gender, neurological and psychiatric symptoms, serum RPR, a mucous plaque of the larynx and nose, a history of other STD infections, and co-diabetes. The model exhibited good performance with concordance indexes of 0.84 (95% CI, 0.83–0.85) and 0.82 (95% CI, 0.78–0.86) in the training and validation cohorts, respectively, along with well-fitted calibration curves. This study developed a precise nomogram to predict neurosyphilis risk in syphilis patients, with potential implications for early detection prior to an LP.
Here, we report the generation of MeV alpha-particles from H-11B fusion initiated by laser-accelerated boron ions. Boron ions with maximum energy of 6 MeV and fluence of 109/MeV/sr@5 MeV were generated from 60 nm-thick self-supporting boron nanofoils irradiated by 1 J femtosecond pulses at an intensity of 1019 W/cm2. By bombarding secondary hydrogenous targets with the boron ions, 3 × 105/sr alpha-particles from H-11B fusion were registered, which is consistent with the theoretical yield calculated from the measured boron energy spectra. Our results demonstrated an alternative way toward ultrashort MeV alpha-particle sources employing compact femtosecond lasers. The ion acceleration and product measurement scheme are referential for the studies on the ion stopping power and cross section of the H-11B reaction in solid or plasma.
Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disorder, affecting approximately 25 % of the population. Coffee-drinking obese smokers exhibit lower body weights and decreased NAFLD rates, but the reasons behind this remain unclear. Additionally, the effect of nicotine, the main component of tobacco, on the development of NAFLD is still controversial. Our study aimed to explore the possible reasons that drinking coffee could alleviate NAFLD and gain weight and identify the real role of nicotine in NAFLD of obese smokers. A NAFLD model in mice was induced by administering nicotine and a high-fat diet (HFD). We recorded changes in body weight and daily food intake, measured the weights of the liver and visceral fat, and observed liver and adipose tissue histopathology. Lipid levels, liver function, liver malondialdehyde (MDA), superoxide dismutase (SOD), serum inflammatory cytokine levels and the expression of hepatic genes involved in lipid metabolism were determined. Our results demonstrated that nicotine exacerbated the development of NAFLD and caffeine had a hepatoprotective effect on NAFLD. The administration of caffeine could ameliorate nicotine-plus-HFD-induced NAFLD by reducing lipid accumulation, regulating hepatic lipid metabolism, alleviating oxidative stress, attenuating inflammatory response and restoring hepatic functions. These results might explain why obese smokers with high coffee consumption exhibit the lower incidence rate of NAFLD and tend to be leaner. It is essential to emphasise that the detrimental impact of smoking on health is multifaceted. Smoking cessation remains the sole practical and effective strategy for averting the tobacco-related complications and reducing the risk of mortality.
Schistosomiasis, a parasite infectious disease caused by Schistosoma japonicum, often leads to egg granuloma and fibrosis due to the inflammatory reaction triggered by egg antigens released in the host liver. This study focuses on the role of the egg antigens CP1412 protein of S. japonicum (SjCP1412) with RNase activity in promoting liver fibrosis. In this study, the recombinant egg ribonuclease SjCP1412, which had RNase activity, was successfully prepared. By analysing the serum of the population, it has been proven that the anti-SjCP1412 IgG in the serum of patients with advanced schistosomiasis was moderately correlated with liver fibrosis, and SjCP1412 may be an important antigen associated with liver fibrosis in schistosomiasis. In vitro, the rSjCP1412 protein induced the human liver cancer cell line Hep G2 and liver sinusoidal endothelial cells apoptosis and necrosis and the release of proinflammatory damage-associated molecular patterns (DAMPs). In mice infected with schistosomes, rSjCP1412 immunization or antibody neutralization of SjCP1412 activity significantly reduced cell apoptosis and necroptosis in liver tissue, thereby reducing inflammation and liver fibrosis. In summary, the SjCP1412 protein plays a crucial role in promoting liver fibrosis during schistosomiasis through mediating the liver cells apoptosis and necroptosis to release DAMPs inducing an inflammatory reaction. Blocking SjCP1412 activity could inhibit its proapoptotic and necrotic effects and alleviate hepatic fibrosis. These findings suggest that SjCP1412 may be served as a promising drug target for managing liver fibrosis in schistosomiasis japonica.
Blastocystis sp. is a prevalent protistan parasite found globally in the gastrointestinal tract of humans and various animals. This review aims to elucidate the advancements in research on axenic isolation techniques for Blastocystis sp. and their diverse applications. Axenic isolation, involving the culture and isolation of Blastocystis sp. free from any other organisms, necessitates the application of specific media and a series of axenic treatment methods. These methods encompass antibiotic treatment, monoclonal culture, differential centrifugation, density gradient separation, micromanipulation and the combined use of culture media. Critical factors influencing axenic isolation effectiveness include medium composition, culture temperature, medium characteristics, antibiotic type and dosage and the subtype (ST) of Blastocystis sp. Applications of axenic isolation encompass exploring pathogenicity, karyotype and ST analysis, immunoassay, characterization of surface chemical structure and lipid composition and understanding drug treatment effects. This review serves as a valuable reference for clinicians and scientists in selecting appropriate axenic isolation methods.
Blastocystis sp. is a common parasite in the intestinal tract of humans and animals. The clinical diagnosis of Blastocystis sp. mainly depends on the microscopic observation of parasite, which can lead to false-negative results. An accurate and convenient diagnostic approach for Blastocystis sp. infection is crucial for effectively preventing and controlling blastocystosis. Herein, we developed a recombinase polymerase amplification (RPA) method for detecting Blastocystis sp. The results showed that the DNA amplification by RPA established in this study could be performed within 5 min at 37°C, with maximum band intensity observed at 30 min. The minimum detection limit of RPA was 100 fg μL−1, consistent with conventional polymerase chain reaction (cPCR). Furthermore, the RPA method exhibited no cross-reactivity with 7 other non-target pathogens in the intestinal tract. Next, the newly established RPA method was used to analyse 40 fecal samples collected clinically, and the detection results were consistent with cPCR. These results corroborate that the newly developed RPA method has good sensitivity and specificity and offers the advantage of short detection times, which can be harnessed for differential diagnosis and rapid detection of Blastocystis sp.
In the context of China's rising global role, the question of where its academia is moving to becomes a matter of concern. Embedded in the literature on academic (de)colonization and intellectual pluralism, research was conducted by Chinese educational scholars on the status quo of educational studies on and in mainland China within the world system of knowledge production. We report its major findings in order to respond to continuing struggles within the contemporary Chinese academic society and between global “centres” and “peripheries.” Drawing on semi-structured interviews conducted with both overseas ethnic Chinese and non-Chinese education researchers, as well as bibliographic and content analyses among relevant academic publications, its findings indicate the growing but still limited global impact of educational studies on/in China especially theoretically and epistemologically, tensions between “centres” and “peripheries” within the world knowledge system, as well as tensions between internationalization and local knowledge. Suggestions for future directions have been concluded based on empirical data.
Placental trophoblastic cells play important roles in placental development and fetal health. However, the mechanism of trophoblastic cell fusion is still not entirely clear. The level of Tspan5 in the embryo culture medium was detected using enzyme-linked immunosorbent assay (ELISA). Fusion of BeWo cells was observed by immunofluorescence. Cell fusion-related factors and EMT-related factors were identified by qRT-PCR and western blotting. Notch protein repressor DAPT was used to verify the role of Tspan5 in BeWo cells. The expression of Tspan5 was significantly increased in embryo culture medium. The fusion of BeWo cells was observed after treatment with forskolin (FSK). Cell fusion-related factors (i.e. β-hCG and syncytin 1/2) and Tspan5 were significantly increased after FSK treatment. In addition, FSK treatment promoted EMT-related protein expression in BeWo cells. Knockdown of Tspan5 inhibited cell fusion and EMT-related protein levels. Notch-1 and Jagged-1 protein levels were significantly upregulated, and the EMT process was activated by overexpression of Tspan5 in FSK-treated BeWo cells. Interestingly, blocking the Notch pathway by the repressor DAPT had the opposite results. These results indicated that Tspan5 could promote the EMT process by activating the Notch pathway, thereby causing cell fusion. These findings contribute to a better understanding of trophoblast cell syncytialization and embryonic development. Tspan5 may be used as a therapeutic target for normal placental development.
Coastal eutrophication and hypoxia remain a persistent environmental crisis despite the great efforts to reduce nutrient loading and mitigate associated environmental damages. Symptoms of this crisis have appeared to spread rapidly, reaching developing countries in Asia with emergences in Southern America and Africa. The pace of changes and the underlying drivers remain not so clear. To address the gap, we review the up-to-date status and mechanisms of eutrophication and hypoxia in global coastal oceans, upon which we examine the trajectories of changes over the 40 years or longer in six model coastal systems with varying socio-economic development statuses and different levels and histories of eutrophication. Although these coastal systems share common features of eutrophication, site-specific characteristics are also substantial, depending on the regional environmental setting and level of social-economic development along with policy implementation and management. Nevertheless, ecosystem recovery generally needs greater reduction in pressures compared to that initiated degradation and becomes less feasible to achieve past norms with a longer time anthropogenic pressures on the ecosystems. While the qualitative causality between drivers and consequences is well established, quantitative attribution of these drivers to eutrophication and hypoxia remains difficult especially when we consider the social economic drivers because the changes in coastal ecosystems are subject to multiple influences and the cause–effect relationship is often non-linear. Such relationships are further complicated by climate changes that have been accelerating over the past few decades. The knowledge gaps that limit our quantitative and mechanistic understanding of the human-coastal ocean nexus are identified, which is essential for science-based policy making. Recognizing lessons from past management practices, we advocate for a better, more efficient indexing system of coastal eutrophication and an advanced regional earth system modeling framework with optimal modules of human dimensions to facilitate the development and evaluation of effective policy and restoration actions.
We firstly report a 2-μm all-fiber nonlinear pulse compressor based on two pieces of normal dispersion fiber (NDF), which enables a high-power scaling ability of watt-level and a high pulse compression ratio of 13.7. With the NDF-based all-fiber nonlinear pulse compressor, the 450-fs laser pulses with a repetition rate of 101.4 MHz are compressed to 35.1 fs, corresponding to a 5.2 optical oscillation cycle at the 2-μm wavelength region. The output average power reaches 1.28 W, which is believed to be the highest value never achieved from the previous 2-μm all-fiber nonlinear pulse compressors with a high pulse repetition rate above 100 MHz. The dynamic evolution of the ultrafast pulse inside the all-fiber nonlinear pulse compressor is numerically analyzed, matching well with the experimental results.
The low maturation rate of oocytes is an important reason for female infertility and failure of assisted pregnancy. The germinal vesicle breakdown (GVBD) is a landmark event of oocyte maturation. In our previous studies, we found that zona pellucida 3 (ZP3) was strongly concentrated in the nuclear region of germinal vesicle (GV) oocytes and interacted with aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) and lamin A to promote GVBD. In the current study, we found that lamin A is mainly concentrated in the nuclear membrane. When ZP3 is knocked down, lamin A will be partially transferred to the nucleus of oocytes. The prelamin A is increased in both the nuclear membrane and nucleus, while phosphorylated lamin A (p-lamin A) is significantly reduced. AIPL1 was also proved to accumulate in the GV region of oocytes, and ZP3 deletion can significantly inhibit the aggregation of AIPL1 in the nuclear region. Similar to ZP3 knockdown, the absence of AIPL1 resulted in a decrease in the occurrence of GVBD, an increase in the amount of prelamin A, and a significant decrease in p-lamin A in oocytes developed in vitro. Finally, we propose the hypothesis that ZP3 can stabilize farnesylated prelamin A on the nuclear membrane of AIPL1, and promote its further processing into mature lamin A, therefore promoting the occurrence of GVBD. This study may be an important supplement for the mechanism of oocyte meiotic resumption and provide new diagnostic targets and treatment clues for infertility patients with oocyte maturation disorder.
In this work, an artificial neural network model is established to understand the relationship among the tensile properties of as-printed Ti6Al4V parts, annealing parameters, and the tensile properties of annealed Ti6Al4V parts. The database was established by collecting published reports on the annealing treatment of selective laser melting (SLM) Ti6Al4V, from 2006 to 2020. Using the established model, it is possible to prescribe annealing parameters and predict properties after annealing for SLM Ti-6Al-4V parts with high confidence. The model shows high accuracy in the prediction of yield strength (YS) and ultimate tensile strength (UTS). It is found that the YS and UTS are sensitive to the annealing parameters, including temperature and holding time. The YS and UTS are also sensitive to initial YS and UTS of as-printed parts. The model suggests that an annealing process of the holding time of fewer than 4 h and the holding temperature lower than 850°C is desirable for as-printed Ti6Al4V parts to reach the YS required by the ASTM standard. By studying the collected data of microstructure and tensile properties of annealed Ti6Al4V, a new Hall-Petch relationship is proposed to correlate grain size and YS for annealed SLM Ti6Al4V parts in this work. The prediction of strain to failure shows lower accuracy compared with the predictions of YS and UTS due to the large scattering of the experimental data collected from the published reports.
An episodic memory experiment was conducted to examine whether “conceptual metaphors” influence how metaphorical expressions are processed and encoded into memory. Forty Chinese–English bilinguals read lists of expressions in their L1 and L2. The data revealed that after reading a series of metaphorical expressions based on the same underlying conceptual metaphor, participants falsely recognized new sentences that instantiated the same conceptual metaphor mapping more often than control sentences that did not share this mapping. This false memory effect was robust in both participants’ L1 and L2, with the only difference between languages being that participants showed more memory errors for literal sentences related to the source domain of the conceptual metaphors when reading in their second language (i.e., English). These data suggest that although bilinguals can access the appropriate conceptual metaphors in their second language, they have difficulty inhibiting literal meaning when processing metaphorical statements.