We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a nonlinear Robin problem driven by a non-homogeneous differential operator plus an indefinite potential term. The reaction function is Carathéodory with arbitrary growth near±∞. We assume that it is odd and exhibits a concave term near zero. Using a variant of the symmetric mountain pass theorem, we establish the existence of a sequence of distinct nodal solutions which converge to zero.
We consider a nonlinear parametric elliptic equation driven by a nonhomogeneous differential operator with a logistic reaction of the superdiffusive type. Using variational methods coupled with suitable truncation and comparison techniques, we prove a bifurcation type result describing the set of positive solutions as the parameter varies.
A homogeneous Dirichlet problem with p-Laplacian and reaction term depending on a parameter λ > 0 is investigated. At least five solutions—two negative, two positive and one sign-changing (namely, nodal)—are obtained for all λ sufficiently small by chiefly assuming that the involved non-linearity exhibits a concave-convex growth rate. Proofs combine variational methods with truncation techniques.
We consider a nonlinear periodic problem driven by the scalar p-Laplacian and with a reaction term which exhibits a (p – 1)-superlinear growth near ±∞ but need not satisfy the Ambrosetti-Rabinowitz condition. Combining critical point theory with Morse theory we prove an existence theorem. Then, using variational methods together with truncation techniques, we prove a multiplicity theorem establishing the existence of at least five non-trivial solutions, with precise sign information for all of them (two positive solutions, two negative solutions and a nodal (sign changing) solution).
We consider a nonlinear periodic problem driven by a nonlinear nonhomogeneous differential operator and a Carathéodory reaction term $f\left( t,\,x \right)$ that exhibits a $\left( p\,-\,1 \right)$-superlinear growth in $x\,\in \,\mathbb{R}$ near $\pm \infty $ and near zero. A special case of the differential operator is the scalar $p$-Laplacian. Using a combination of variational methods based on the critical point theory with Morse theory (critical groups), we show that the problem has three nontrivial solutions, two of which have constant sign (one positive, the other negative).
We consider the nonlinear elliptic equation driven by the p-Laplacian and with a Carathéodory reaction depending on a parameter λ > 0, looking for positive solutions. We prove two bifurcation-type results. In the first the bifurcation occurs near 0 (for small values of λ > 0) and our setting incorporates problems with the combined effects of concave and convex nonlinearities. In the second, the bifurcation occurs near +∞ (for large values of λ > 0) and our setting incorporates as a special case p-logistic equations with superdiffusive reaction. Our approach is variational, based on minimax methods and truncation techniques.
We study a semilinear elliptic problem on a compact Riemannian manifold with boundary, subject to an inhomogeneous Neumann boundary condition. Under various hypotheses on the nonlinear terms, depending on their behaviour in the origin and infinity, we prove multiplicity of solutions by using variational arguments.
We consider semilinear periodic problems with the right-hand side nonlinearity satisfying a double resonance condition between two successive eigenvalues. Using a combination of variational and degree theoretic methods, we prove the existence of at least two nontrivial solutions.
In this paper we consider a non-linear periodic problem driven by the scalar p-Laplacian and with a non-smooth potential. We assume that the multi-valued right-hand-side non-linearity exhibits an asymmetric behaviour at ±∞ and crosses a finite number of eigenvalues as we move from −∞ to +∞. Using a variational approach based on the non-smooth critical-point theory, we show that the problem has at least two non-trivial solutions, one of which has constant sign. For the semi-linear (p = 2), smooth problem, using Morse theory, we show that the problem has at least three non-trivial solutions, again one with constant sign.
In this paper we study parametric optimal control problems governed by a nonlinear parabolic equation in divergence form. The parameter appears in all the data of the problem, including the partial differential operator. Using as tools the G-convergence of operators and the Γ-convergence of functionals, we show that the set-valued map of optimal pairs is upper semicontinuous with respect to the parameter and the optimal value function responds continuously to changes of the parameter. Finally in the case of semilinear systems we show that our framework can also incorporate systems with weakly convergent coefficients.
In this paper we consider an infinite horizon, continuous time model of economic growth. We prove two theorems; one on the existence of optimal paths of capital accumulation and the other on the dependence of the set of optimal paths on the initial capital stock (sensitivity analysis). In the existence result the underlying technology set is nonconvex and only its “investment’ slices are convex. The proof is direct, without any use of necessary conditions. In the sensitivity analysis, the technology set is convex and so we have that the value function is concave. Then having that, we show that the set of optimal paths is an upper semicaontinuous multifunction of the initial capital stock.
We consider semilinear elliptic problems in which the right-hand-side nonlinearity depends on a parameter λ > 0. Two multiplicity results are presented, guaranteeing the existence of at least three non-trivial solutions for this kind of problem, when the parameter λ belongs to an interval (0,λ*). Our approach is based on variational techniques, truncation methods and critical groups. The first result incorporates as a special case problems with concave–convex nonlinearities, while the second one involves concave nonlinearities perturbed by an asymptotically linear nonlinearity at infinity.
We study the existence of extremal periodic solutions for nonlinear evolution inclusions defined on an evolution triple of spaces and with the nonlinear operator establish A being time-dependent and pseudomonotone. Using techniques of multivalued analysis and a surjectivity result for L-generalized pseudomonotone operators, we prove the existence of extremal periodic solutions. Subsequently, by assuming that A(t, ·) is monotone, we prove a strong relaxation theorem for the periodic problem. Two examples of nonlinear distributed parameter systems illustrate the applicability of our results.
In “Viability Theory”, we select trajectories which are viable in the sense that they always satisfy a given constraint. Since the fundamental work of Nagumo [26], we know that in order to guarantee existence of viable trajectories, we need to satisfy certain tangential conditions. In the case of differential inclusions and using the modern terminology and notation of tangent cones, this condition takes the form F(t, x) ∩ TK#φ, where F(.,.) is the orientor field involved in the differential inclusion, K is the viability (constraint) set and TK(x) is the tangent cone to K at x. Results on the existence of viable solutions for differential inclusions can be found in Aubin–Cellina [2] and Papageorgiou [30,32].
In this paper we examine the dependence of the solutions of an evolution inclusion on a parameter λ We prove two dependence theorems. In the first the parameter appears only in the orientor field and we show that the solution set depends continuously on it for both the Vietoris and Hausdorff topologies. In the second the parameter appears also in the monotone operator. Using the notion of G-convergence of operators we prove that the solution set is upper semicontinuous with respect to the parameter. Both results make use of a general existence theorem which we also prove in this paper. Finally, we present two examples. One from control theory and the other from partial differential inclusions.
In this paper we consider a nonlinear periodic parabolic boundary value problem with a discontinuous nonmonotone nonlinearity. Using a lifting result for operators of type (S+), a general surjectivity theorem for operators of monotone type and an auxiliary problem defined by truncation and penalization we prove the existence of a solution in the order interval formed by an upper and lower solution. Moreover we show that the set of all such solutions is compact in Lp(T, (Z)).
We study a second order nonlinear system driven by the vector $p$-Laplacian, with a multivalued nonlinearity and defined on the positive time semi-axis ${{\mathbb{R}}_{+}}.$ Using degree theoretic techniques we solve an auxiliary mixed boundary value problem defined on the finite interval $\left[ 0,\,n \right]$ and then via a diagonalization method we produce a solution for the original infinite time horizon system.
We consider a nonlinear Dirichlet problem driven by the p(ċ)-Laplacian. Using variational methods based on the critical point theory, together with suitable truncation techniques and the use of upper-lower solutions and of critical groups, we show that the problem has at least three nontrivial solutions, two of which have constant sign (one positive, the other negative). The hypotheses on the nonlinearity incorporates in our framework of analysis, both coercive and noncoercive problems.
In this paper we investigate the existence of positive solutions for nonlinear elliptic problems driven by the $p$-Laplacian with a nonsmooth potential (hemivariational inequality). Under asymptotic conditions that make the Euler functional indefinite and incorporate in our framework the asymptotically linear problems, using a variational approach based on nonsmooth critical point theory, we obtain positive smooth solutions. Our analysis also leads naturally to multiplicity results.
In this paper we study nonlinear elliptic problems of Neumann type driven by the $p$-Laplacian differential operator. We look for situations guaranteeing the existence of multiple solutions. First we study problems which are strongly resonant at infinity at the first (zero) eigenvalue. We prove five multiplicity results, four for problems with nonsmooth potential and one for problems with a ${{C}^{1}}$-potential. In the last part, for nonsmooth problems in which the potential eventually exhibits a strict super-$p$-growth under a symmetry condition, we prove the existence of infinitely many pairs of nontrivial solutions. Our approach is variational based on the critical point theory for nonsmooth functionals. Also we present some results concerning the first two elements of the spectrum of the negative $p$-Laplacian with Neumann boundary condition.