We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Femoral neck bone mineral density (FNBMD) is a high risk factor for femoral head fractures, and coffee intake affects bone mineral density, but the effect on FNBMD remains to be explored. First, we conducted an observational study in the National Health and Nutrition Examination Survey and collected data on coffee intake, FNBMD, and sixteen covariates. Weight linear regression was used to explore the association of coffee intake with FNBMD. Then, Mendelian randomisation (MR) was used to explore the causal relationship between coffee intake and FNBMD, the exposure factor was coffee intake, and the outcome factor was FNBMD. The inverse variance weighting (IVW) method was used for the analysis, while heterogeneity tests, sensitivity, and pleiotropy analysis were performed. A total of 5 915 people were included in the cross-sectional study, including 3 178 men and 2 737 women. In the completely adjusted model, no coffee was used as a reference. The ORs for the overall population at ‘< 1’, ‘1–<2’, ‘2–<4’, and ‘4+’ (95% CI) were 0.02 (–0.01, 0.04), 0.00 (–0.01, 0.02), –0.01 (–0.02, 0.00), and 0.00 (–0.01, 0.02), respectively. The male and female population showed no statistically significant differences in both univariate and multivariate linear regressions. In the MR study, the IVW results showed an OR (95% CI) of 1.06 (0.88–1.27), a P-value of 0.55, and an overall F-value of 80.31. The heterogeneity, sensitivity analyses, and pleiotropy had no statistical significance. Our study used cross-sectional studies and MR to demonstrate that there is no correlation or causal relationship between coffee intake and FNBMD.
As cities like Beijing expand rapidly, green and blue spaces (GBS)—essential for ecosystem services (ESs) such as clean air, flood control, and recreation—are increasingly threatened. This 20-year study examines how urban expansion and policy interventions have shaped Beijing’s GBS. While green initiatives have increased natural areas, unchecked urban sprawl has fragmented these spaces, reducing their environmental benefits. Satellite data and urban planning analyses underscore a key lesson: maintaining well-connected natural zones is critical for urban resilience. These findings are broadly applicable for rapidly growing cities globally, urging urban planners to integrate ecological conservation with development, and to safeguard healthy environments and vibrant communities.
Technical Summary
This study quantifies the spatiotemporal dynamics of urban GBS in Beijing, evaluating their essential role in delivering ESs and strengthening urban resilience. Although China has achieved substantial progress in urban greening, the ecological impacts of rapid urbanization on GBS configuration and connectivity have not been comprehensively quantified. Using an integrated analytical framework combining principal component analysis and multiple linear regression, we reveal how urban development strategies have shaped GBS dynamics over two decades. A spatially explicit analysis, utilizing geographically weighted regression, further elucidates the heterogeneous relationships among the normalized difference vegetation index, human footprint index, and ESs delivery capacity. Notably, socioeconomic incentives and green infrastructure governance—especially objective indicators such as forest, garden, and greenspace area—have effectively driven GBS expansion. However, urban expansion has led to pronounced fragmentation of peri-urban GBS, suggesting potential degradation of their ecosystem service support functions. These findings emphasize the need for adaptive GBS management strategies that balance ecological conservation with sustainable urban growth in rapidly developing cities.
Social Media Summary
Urban growth fragments green and blue spaces, reducing vital ecosystem services. Balancing conservation with development is essential for sustainable cities.
Bronze mou vessels appear in Shu tombs in south-west China during the Eastern Zhou period (c. 771–256 BC). Examination of these vessels reveals major changes in the supply of metal and alloying technology in the Shu State, throwing new light on the social impact of the Qin conquest and later unification of China.
In laser systems requiring a flat-top distribution of beam intensity, beam smoothing is a critical technology for enhancing laser energy deposition onto the focal spot. The continuous phase modulator (CPM) is a key component in beam smoothing, as it introduces high-frequency continuous phase modulation across the laser beam profile. However, the presence of the CPM makes it challenging to measure and correct the wavefront aberration of the input laser beam effectively, leading to unwanted beam intensity distribution and bringing difficulty to the design of the CPM. To address this issue, we propose a deep learning enabled robust wavefront sensing (DLWS) method to achieve effective wavefront measurement and active aberration correction, thereby facilitating active beam smoothing using the CPM. The experimental results show that the average wavefront reconstruction error of the DLWS method is 0.04 μm in the root mean square, while the Shack–Hartmann wavefront sensor reconstruction error is 0.17 μm.
Developing a model to describe the shock-accelerated cylindrical fluid layer with arbitrary Atwood numbers is essential for uncovering the effect of Atwood numbers on the perturbation growth. The recent model (J. Fluid Mech., vol. 969, 2023, p. A6) reveals several contributions to the instability evolution of a shock-accelerated cylindrical fluid layer but its applicability is limited to cases with an absolute value of Atwood numbers close to $1$, due to the employment of the thin-shell correction and interface coupling effect of the fluid layer in vacuum. By employing the linear stability analysis on a cylindrical fluid layer in which two interfaces separate three arbitrary-density fluids, the present work generalizes the thin-shell correction and interface coupling effect, and thus, extends the recent model to cases with arbitrary Atwood numbers. The accuracy of this extended model in describing the instability evolution of the shock-accelerated fluid layer before reshock is confirmed via direct numerical simulations. In the verification simulations, three fluid-layer configurations are considered, where the outer and intermediate fluids remain fixed and the density of the inner fluid is reduced. Moreover, the mechanisms underlying the effect of the Atwood number at the inner interface on the perturbation growth are mainly elucidated by employing the model to analyse each contribution. As the Atwood number decreases, the dominant contribution of the Richtmyer–Meshkov instability is enhanced due to the stronger waves reverberated inside the layer, leading to weakened perturbation growth at initial in-phase interfaces and enhanced perturbation growth at initial anti-phase interfaces.
Vapour bubbles produced by long-pulsed laser often have complex non-spherical shapes that reflect some characteristics of the laser beam. The transition between two commonly observed shapes, namely, a rounded pear-like shape and an elongated conical shape, is studied using a new computational model that combines compressible multiphase fluid dynamics with laser radiation and phase transition. Two laboratory experiments are simulated, in which a holmium:YAG or thulium fibre laser is used to generate bubbles of different shapes. In both cases, the predicted bubble nucleation and morphology agree reasonably well with the experimental observation. The full-field results of laser irradiance, temperature, velocity and pressure are analysed to explain bubble dynamics and energy transmission. It is found that due to the lasting energy input, the vapour bubble's dynamics is driven not only by advection, but also by the continued vaporisation at its surface. Vaporisation lasts less than $1~{\rm \mu}$s in the case of the pear-shaped bubble, compared with over $50~{\rm \mu}$s for the elongated bubble. It is thus hypothesised that the bubble's morphology is determined by competition. When the speed of advection is higher than that of vaporisation, the bubble tends to grow spherically. Otherwise, it elongates along the laser beam direction. To test this hypothesis, the two speeds are defined analytically using a model problem, then estimated for the experiments using simulation results. The results support the hypothesis. They also suggest that when the laser's power is fixed, a higher laser absorption coefficient and a narrower beam facilitate bubble elongation.
Sediments within accretionary complexes, preserving key information on crust growth history of Central Asian Orogenic Belt, did not get enough attention previously. Here, we conduct comprehensive geochemical study on the turbidites from the North Tianshan Accretionary Complex (NTAC) in the Chinese West Tianshan orogen, which is a good example of sediments derived from juvenile materials. The turbidites, composed of sandstone, siltstone, and argillaceous siliceous rocks, are mainly Carboniferous. All the investigated samples have relatively low Chemical Index of Alteration values (35–63) and Plagioclase Index of Alteration values (34–68), indicating relatively weak weathering before erosion and deposition. The sandstone and siltstone, and slate samples display high Index of Compositional Variability values of 0.89–1.50 and 0.89–0.93, suggesting a relatively immature source. The sandstones and siltstones were mainly derived from intermediate igneous rocks, and the slates from felsic igneous rocks, formed in oceanic/continental arc settings. The investigated samples roughly display high positive εNd(t) values (mainly at +5.5 to +7.9, except one spot at +0.8), with corresponding Nd model ages at 672 Ma–522 Ma (except one at ∼1.1 Ga). Combined with the previous studies, we suggest that the turbidites in the NTAC were mainly derived from intermediate to felsic igneous rocks with juvenile arc signature, and thus the northern Chinese West Tianshan is a typical site with significant Phanerozoic crust growth.
Nacrite and dickite are found in two localities in northern Taiwan. One, containing nacrite and dickite, is associated with a gold-enargite deposit as a vug-filling clay in the Chinkushih (CKS) mine district near the northern coast. The other is the occurrence of dickite in the interstices of a Miocene coarse-grained quartzose sandstone in the Nanshihchiao (NSC) area, near Taipei city. X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron microscope (SEM), and petrographic examinations were used to characterize the mineralogical features. Nacrite most often takes the unusual form of rhombic platelets, and dickite is commonly elongated in habit with the shapes possibly related to their origin. Based on geological evidence, we believe that both nacrite and dickite are of hydrothermal origin. In the CKS area, the formation of nacrite and dickite is related to the hypogene gold-enargite mineralization. In contrast, the transformation of dickite in the NSC area is due to the influence of the raised temperatures of sandstone formation, resulting from volcanic activity during the Kungkuan stage after the deposition of the sandstone.
Clay mineral compositions from 2 paleosol profiles (Chu-Wan, CW, and Shiao-Men Yu, SMY, profiles) on the late-Miocene sediments in Penghu Islands (Pescadores), Taiwan, are characterized by random X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). By the clay assemblage of the paleosol profile, we want to explore the probable formation mode of the Penghu paleosols.
The paleosol profiles in study are overlain by a layer of basalt flow. However, the clay mineralogy of the 2 paleosols was not altered metasomatically after burial. Results show that 3 distinctive zones of different dominating kaolin-group minerals are apparent in the profiles. In descending order, they are: 1) spheroidal, hollow 7Å-halloysite, 2) platy, irregular-shaped and disordered kaolinite, and 3) platy, irregular-shaped, disordered kaolinite. The relative crystallinity of kaolin minerals of the 3 layers is: layer 2 > layer 3 > layer 1. On the basis of the XRD, TEM analyses and the crystallinity calculations, the distribution of kaolin in Penghu paleosol profiles appears to be unique. Penghu paleosol profiles show systematic change in kaolin crystallinity and polymorphs with depth. Because the clay type is heterogeneous within the profile, this represents that Penghu paleosol profiles were polypedogenic.
The contact between the upper basalt and the paleosol is the erosion surface, so we do not know exactly what the thickness of the original paleosol was. The first layer (about 20 cm) of the profiles appears to be constituents of the original paleosol. It contains high contents of pedogenic (in situ weathering) hematites and 7Å-halloysites, which implies that the local climate of the Penghu Islands at late Miocene was warm and humid. Intense leaching and dry/wet cycle should be the reason for high contents of halloysite (>60%) in the Penghu paleosols. Laterization was the probable pedogenic process for the formation of the paleosols.
tDCS application to the DLPFC is associated with the improvements of executive function, memory enhancement, language, processing speed, global cognitive symptoms and apathy over time after treatment. DLB is the second most common form of degenerative dementia. There is no FDA-approved medications that can slow, stop or improve the progression of cognitive declines in DLB. Identifying effective treatments is a critical issue for DLB. In neuropathology, extracelluar α-syn oligomers interfere with the expression of long-term potentiation(LTP), and influence memory and learning. tDCS has been proposed to affect long-term synaptic plasticity through LTP and long-term depression, thereby improving cognitive ability. So far, only two studies have evaluated the effect of tDCS in DLB. In this pilot study, we investigate the effect of tDCS on left DLPFC in DLB.
Method:
Fourteen DLB aged 55-90 years (mean age 76.4, with 4 males and 10 females) were included in a double-blind, randomized, sham-controlled cross over design study. DLB diagnostics is according to DSM-5 criteria. CDR ratings for DLB participants ranged from 0.5 to 2. The active tDCS (or sham) process consists of daily sessions of active tDCS (or sham) for 10 consecutive days. The anodal electrode was placed over the left DLPFC and the cathodal electrode was placed over the right supraorbital area, with a current intensity of 2 mA and an electrode size of 25 cm2 for 30 min in a session. Before and after these treatment sessions, all subjects received a series of neuropsychological tests, including CDR, MMSE, CASI, NPI and WCST. Chi-square test, Wilcoxon signed ranks test and Mann-Whitney U test were used to assess differences in participant demographic characteristics and to compare differences among groups.
Results:
The active tDCS group showed significant improvements on the three items of CASI, ‘language ability’, ‘concentration and calculation’, ‘categorical verbal fluency’, after active stimulations. There is no improvement in MMSE, CASI, NPI and WCST scores in the sham groups.
Conclusion:
These results suggest that left DLPFC anodal, and right deltoid cathodal tDCS, may have some cognitive benefits in DLB. Larger-scale trials are needed to confirm the effect of tDCS in DLB.
Key words: Transcranial Direct Current Stimulation, Dementia with Lewy Bodies, cognitive function, Wisconsin Card Sorting Test, left DLPFC
Transcranial direct current stimulation (tDCS) has been proposed to affect long-term synaptic plasticity through LTP and LTD, thereby improving cognitive ability. In pathology, the amyloid deposits in AD disrupts the balance between long-term potentiation (LTP) and long-term depression (LTD) of neuronal cells and synaptic plasticity. An increasing number of studies have been concluded a positive therapeutic effect on cognition in AD. In brain stimulation, dorsolateral prefrontal cortex (DLPFC) was associated with improvements in memory enhancement, language, processing speed, global cognitive symptoms, and apathy over a period of treatment. Theoretically, the aftereffect of tDCS would need to be re-stimulated by tDCS to maintain its delayed plastic response benefits. In this pilot study, we investigate the maintenance effects of continuing tDCS at three different times, weekly, every two weeks, and every four weeks, for 12 weeks.
Method:
Twenty-eight AD participants aged 55-90 years were enrolled (mean age 72.7, 77.3, and 76.2 in the three groups - maintained weekly (7 cases), biweekly (9 cases) and every 4 weeks (12 cases)). The anodal electrode was placed over the left dorsal lateral prefrontal cortex and the cathodal electrode was placed over the right supraorbital area. In each active session, we applied a current intensity of 2 mA and an electrode size of 25 cm2 for 30 min. All subjects received a series of neuropsychological assessments including CDR, MMSE, CASI and WCST at (1) baseline, (2) post-10sessions of tDCS (in 2weeks), and (3) post-maintenance phase (total of 12 weeks). Chi-square tests, Wilcoxon signed rank tests and Mann-Whitney U tests were used to assess differences in participant demographic characteristics and to compare differences in test scores between groups.
Results:
After 10 sessions of tDCS stimulations, the total CASI scores in the 1-week group improved significantly from baseline to 2 weeks. However, there are no significant difference in MMSE, CASI or WCST between baseline and after maintain phase stimulations in each group.
Conclusion:
Although tDCS has a positive effect in AD, it is recommended to prolong the number of tDCS stimulations, such as 20 sessions in 4 weeks.
Chinmen Island is located in the west of the Taiwan Strait, 15 km from the coast of mainland China. Mesozoic granitic gneiss forms the basement rocks of the island. High-defect kaolin deposits, both major sedimentary and minor residual types of clays, have been mined for ceramic uses for many years. The objectives of this study were to characterize the kaolin deposits and to discuss the genesis of kaolin minerals on the island. The kaolin samples were characterized by X-ray diffraction and transmission and scanning electron microscopy. In general, the particle-size distribution of the sedimentary kaolin was 0.5–5.0% sand, 15–55% silt and 30–85% clay. In the clay fraction, the ratio of kaolinite to illite ranged from 9:1 to 3:1. The sedimentary kaolin materials were originally transported by river from mainland China. Kaolinite occurred generally as pseudo-hexagonal platelets of ∼1 µm in diameter. The residual kaolin minerals resulted from the argillization of granitoid rocks by in situ weathering which possibly occurred during the Pleistocene. The residual kaolin contained more tubular halloysite.
Phenol contaminants are highly biotoxic and have become a global problem threatening the environment and human health. The objective of the present study was to develop a very efficient and easily recyclable adsorbent to remove phenol. A magnetic montmorillonite composite with organic co-intercalation was fabricated by a simple one-step co-precipitation method and exhibited excellent phenol removal. Two surfactants, cetyltrimethylammonium bromide (CTAB) and erucic acid amide (EA), were successfully co-intercalated into the interlayer of Ca-montmorillonite, and Fe3O4 nanoparticles were simultaneously decorated to obtain Fe3O4-CTAB/EA-montmorillonite composite (Fe3O4-C/E-Mnt). The morphology and structure of Fe3O4-C/E-Mnt composite were explored by using different techniques such as X-ray diffraction, Fourier-Transform infrared spectroscopy, X-ray photoelectron microscopy and so on. The adsorption capacity of Fe3O4-C/E-Mnt for phenol was investigated under various conditions including temperature, pH, contact time, various phenol concentrations, and adsorbent dosage. The results showed that Fe3O4-C/E-Mnt retained a lamellar structure of Ca-Mnt with mesopores. Its interlayer space, surface area, and pore volume were increased. The Fe3O4-C/E-Mnt composite exhibited a good adsorption capacity (31.45 mg·g–1) for phenol with a removal efficiency of 85.46% at optimized conditions. Moreover, the adsorbent still maintained 78.32% of the adsorption capacity after five cycles. The adsorption test data of Fe3O4-C/E-Mnt followed the pseudo-second order kinetic model and the Langmuir model. The adsorption was a spontaneous, exothermic, entropy-decreasing process, and a possible adsorption mechanism of Fe3O4-C/E-Mnt was finally proposed.
Longitudinal studies on the variations of phenotypic and genotypic characteristics of K. pneumoniae across two decades are rare. We aimed to determine the antimicrobial susceptibility and virulence factors for K. pneumoniae isolated from patients with bacteraemia or urinary tract infection (UTI) from 1999 to 2022. A total of 699 and 1,267 K. pneumoniae isolates were isolated from bacteraemia and UTI patients, respectively, and their susceptibility to twenty antibiotics was determined; PCR was used to identify capsular serotypes and virulence-associated genes. K64 and K1 serotypes were most frequently observed in UTI and bacteraemia, respectively, with an increasing frequency of K20, K47, and K64 observed in recent years. entB and wabG predominated across all isolates and serotypes; the least frequent virulence gene was htrA. Most isolates were susceptible to carbapenems, amikacin, tigecycline, and colistin, with the exception of K20, K47, and K64 where resistance was widespread. The highest average number of virulence genes was observed in K1, followed by K2, K20, and K5 isolates, which suggest their contribution to the high virulence of K1. In conclusion, we found that the distribution of antimicrobial susceptibility, virulence gene profiles, and capsular types of K. pneumoniae over two decades were associated with their clinical source.
Instability evolutions of shock-accelerated thin cylindrical SF$_6$ layers surrounded by air with initial perturbations imposed only at the outer interface (i.e. the ‘Outer’ case) or at the inner interface (i.e. the ‘Inner’ case) are numerically and theoretically investigated. It is found that the instability evolution of a thin cylindrical heavy fluid layer not only involves the effects of Richtmyer–Meshkov instability, Rayleigh–Taylor stability/instability and compressibility coupled with the Bell–Plesset effect, which determine the instability evolution of the single cylindrical interface, but also strongly depends on the waves reverberated inside the layer, thin-shell correction and interface coupling effect. Specifically, the rarefaction wave inside the thin fluid layer accelerates the outer interface inward and induces the decompression effect for both the Outer and Inner cases, and the compression wave inside the fluid layer accelerates the inner interface inward and causes the decompression effect for the Outer case and compression effect for the Inner case. It is noted that the compressible Bell model excluding the compression/decompression effect of waves, thin-shell correction and interface coupling effect deviates significantly from the perturbation growth. To this end, an improved compressible Bell model is proposed, including three new terms to quantify the compression/decompression effect of waves, thin-shell correction and interface coupling effect, respectively. This improved model is verified by numerical results and successfully characterizes various effects that contribute to the perturbation growth of a shock-accelerated thin heavy fluid layer.
We report here the first hundred-watt continuouswave fiber gas laser in H2-filled hollow-core photonic crystal fiber (PCF) by stimulated Raman scattering. The pump source is a homemade narrow-linewidth fiber oscillator with a 3 dB linewidth of 0.15 nm at the maximum output power of 380 W. To efficiently and stably couple several-hundred-watt pump power into the hollow core and seal the gas, a hollow-core fiber end-cap is fabricated and used at the input end. A maximum power of 110 W at 1153 nm is obtained in a 5 m long hollow-core PCF filled with 36 bar H2, and the conversion efficiency of the first Stokes power is around 48.9%. This work paves the way for high-power fiber gas Raman lasers.
The highly nonlinear evolution of the single-mode stratified compressible Rayleigh–Taylor instability (RTI) is investigated via direct numerical simulation over a range of Atwood numbers ($A_T=0.1$–$0.9$) and Mach numbers ($Ma=0.1$–$0.7$) for characterising the isothermal background stratification. After the potential stage, it is found that the bubble is accelerated to a velocity which is well above the saturation value predicted in the potential flow model. Unlike the bubble re-acceleration behaviour in quasi-incompressible RTI with uniform background density, the characteristics in the stratified compressible RTI are driven by not only vorticity accumulation inside the bubble but also flow compressibility resulting from the stratification. Specifically, in the case of strong stratification and high $A_T$, the flow compressibility dominates the bubble re-acceleration characters. To model the effect of flow compressibility, we propose a novel model to reliably describe the bubble re-acceleration behaviours in the stratified compressible RTI, via introducing the dilatation into the classical model that takes into account only vorticity accumulation.
Many protected areas worldwide have been established to protect the last natural refuges of flagship animal species. However, long-established protected areas do not always match the current distributions of target species under changing environmental conditions. Here we present a case study of the Asian elephant Elephas maximus in Xishuangbanna, south-west China, to evaluate whether the established protected areas match the species’ current distribution and to identify key habitat patches for Asian elephant conservation. Our results show that currently only 24.5% of the predicted Asian elephant distribution in Xishuangbanna is located within Xishuangbanna National Nature Reserve, which was established for elephant conservation. Based on the predicted Asian elephant distribution, we identified the most important habitat patches for elephant conservation in Xishuangbanna. The three most important patches were outside Xishuangbanna National Nature Reserve and together they contained 43.3% of the estimated food resources for Asian elephants in all patches in Xishuangbanna. Thus, we identified a spatial mismatch between immobile protected areas and mobile animals. We recommend the inclusion of the three identified key habitat patches in a new national park currently being planned by the Chinese authorities for the conservation of the Asian elephant.
To identify risk factors for mortality in intensive care units (ICUs) in Asia.
Design:
Prospective cohort study.
Setting:
The study included 317 ICUs of 96 hospitals in 44 cities in 9 countries of Asia: China, India, Malaysia, Mongolia, Nepal, Pakistan, Philippines, Sri Lanka, Thailand, and Vietnam.
Participants:
Patients aged >18 years admitted to ICUs.
Results:
In total, 157,667 patients were followed during 957,517 patient days, and 8,157 HAIs occurred. In multiple logistic regression, the following variables were associated with an increased mortality risk: central-line–associated bloodstream infection (CLABSI; aOR, 2.36; P < .0001), ventilator-associated event (VAE; aOR, 1.51; P < .0001), catheter-associated urinary tract infection (CAUTI; aOR, 1.04; P < .0001), and female sex (aOR, 1.06; P < .0001). Older age increased mortality risk by 1% per year (aOR, 1.01; P < .0001). Length of stay (LOS) increased mortality risk by 1% per bed day (aOR, 1.01; P < .0001). Central-line days increased mortality risk by 2% per central-line day (aOR, 1.02; P < .0001). Urinary catheter days increased mortality risk by 4% per urinary catheter day (aOR, 1.04; P < .0001). The highest mortality risks were associated with mechanical ventilation utilization ratio (aOR, 12.48; P < .0001), upper middle-income country (aOR, 1.09; P = .033), surgical hospitalization (aOR, 2.17; P < .0001), pediatric oncology ICU (aOR, 9.90; P < .0001), and adult oncology ICU (aOR, 4.52; P < .0001). Patients at university hospitals had the lowest mortality risk (aOR, 0.61; P < .0001).
Conclusions:
Some variables associated with an increased mortality risk are unlikely to change, such as age, sex, national economy, hospitalization type, and ICU type. Some other variables can be modified, such as LOS, central-line use, urinary catheter use, and mechanical ventilation as well as and acquisition of CLABSI, VAE, or CAUTI. To reduce mortality risk, we shall focus on strategies to reduce LOS; strategies to reduce central-line, urinary catheter, and mechanical ventilation use; and HAI prevention recommendations.