We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The high-power narrow-linewidth fiber laser has become the most widely used high-power laser source nowadays. Further breakthroughs of the output power depend on comprehensive optimization of stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS) and transverse mode instability (TMI). In this work, we aim to further surpass the power record of all-fiberized and narrow-linewidth fiber amplifiers with near-diffraction-limited (NDL) beam quality. SBS is suppressed by white-noise-signal modulation of a single-frequency seed. In particular, the refractive index of the large-mode-area active fiber in the main amplifier is controlled and fabricated, which could simultaneously increase the effective mode field area of the fundamental mode and the loss coefficient of higher-order modes for balancing SRS and TMI. Subsequent experimental measurements demonstrate a 7.03 kW narrow-linewidth fiber laser with a signal-to-noise ratio of 31.4 dB and beam quality factors of Mx2 = 1.26, My2 = 1.25. To the best of our knowledge, this is the highest reported power with NDL beam quality based on a directly laser-diode-pumped and all-fiberized format, especially with narrow-linewidth spectral emission.
Waterborne Escherichia coli (E. coli) represents a pervasive water quality problem across the United States. In Michigan, the presence of E. coli has become problematic for many areas where agricultural run-off and ineffective policies have made these outbreaks endemic. Combining the universe of housing transaction datasets from 2009 to 2017 with the State of Michigan water sampling dataset, we investigate and quantify the negative impacts of E. coli outbreaks on local housing prices. Our difference-in-differences model estimates an overall impact of −8.94% for houses in the treatment group relative to the control group. However, this effect is only short term, as sales prices recover after the outbreak has ended.
The aeroacoustic feedback loops in high-speed circular jets that impinge on a large flat plate are investigated via acoustic measurements and schlieren visualizations. In the present experiments, the nozzle pressure ratio ranges from 1.39 to 2.20, the corresponding ideally expanded jet Mach number $M_j$ is from 0.70 to 1.12 and the nozzle-to-plate distance ($H$) is from 4.0$D$ to 6.0$D$, where $D$ is the nozzle exit diameter. The results of acoustic measurements show that the strongest tones are generated in a limited frequency band. The empirical dispersion relations obtained from the fluctuating greyscales along the jet centreline of time-resolved schlieren images have good agreement with the dispersion relations from the vortex-sheet model. The coherent flow structures at tonal frequencies are extracted by spectral proper orthogonal decomposition and are analysed in detail. For the $M_j<0.82$ jets, the upstream-propagating guided jet mode is progressively confined to the potential core of jets with increasing tonal frequency, which provides the first direct experimental support for theoretical results. The evolution in the structures of acoustic resonance loops is studied along a single frequency stage of axisymmetric impinging tones. When the acoustic resonance between the upstream- and downstream-propagating guided jet modes is formed at tonal frequencies, the impinging tones are intenser. Slightly underexpanded impinging jets can simultaneously produce impingement tones and screech tones. Shock-cell structures have modulatory effects on the downstream-propagating Kelvin–Helmholtz wavepacket and the upstream- and downstream-propagating guided jet modes. Due to the interaction between the flow structures at the frequencies of impinging and screech tones, tones of axisymmetric modes can be produced outside the frequency ranges in which the axisymmetric upstream-propagating guided jet modes are supported by jets.
Oxidative stress is a risk factor for mammary health, resulting in decreased milk yield and milk quality. Application of exogenous bioactive compounds has been a research focus of antioxidation of animals in the mammary gland. Quercetin is a flavonoid extracted from vegetables, fruits and tea and has been shown to have a variety of biological activities, but the effect of quercetin on redox imbalance in mammary epithelial cells is unclear. In this study, cells of HC11, a mouse mammary epithelial cell line, were treated with quercetin, and the effects and molecular mechanisms of quercetin protection on hydrogen peroxide-induced oxidative stress were studied. Results showed that 20 μΜ quercetin attenuated hydrogen peroxide-induced lactate dehydrogenase release and reactive oxygen species (ROS) accumulation and alleviated the reduction of cell viability and antioxidant capacity. Quercetin significantly restored the activation of mitogen-activated protein kinase (MAPK) and nuclear factor E2-related factor 2 (Nrf2) pathways induced by hydrogen peroxide. Importantly, the inhibitors of p38 MAPK and extracellular regulated protein pathways affected the activation of Nrf2 pathway. All inhibitors of MAPK and Nrf2 pathways reduced the protective effects of quercetin on cell proliferation, the activity of catalase and the expression of glutamate-cysteine ligase modifier subunit. Meanwhile, the effects of quercetin on the production of ROS and expression of glutamate/cystine reverse transporter light chain were mainly dependent on Nrf2 pathway. In summary, the protective effect of quercetin in mammary epithelial cells was mediated via MAPK and Nrf2 pathways.
The rheological properties of sepiolite gels in relation to solution chemistry, fiber charge, and microstructure are poorly understood. The purpose of this study was to bring more clarity to this topic by quantifying the effects of solution pH, ionic strength, and adsorbed tetrasodium pyrophosphate (TSPP) additive on rheological properties. The electrical charge on sepiolite fibers was investigated to explain the fiber interaction configuration observed in the microstructure. Fiber interaction forces and dynamics explained the ageing behavior of the gel. Sepiolite gels of only a few percent solids displayed long-time ageing behavior, which was manifested by an increasing yield stress with wait time and continued for weeks. The gel microstructure showed randomly orientated rigid fibers with cross configuration attraction. Each fiber experiences both attractive (van der Waals and heterogeneous charge) and repulsive (electric double layer) forces, and initially a net force. The repulsive force causes these fibers to orientate or move continually to achieve a state of force equilibrium and this process takes a long time. The Leong model describes this ageing behavior. For good fiber separation, high intensity probe sonication of the suspension was required. The yield stress increased with sonication time, solids loading, and temperature. The yield stress was absent at pH > 11 and increased to a maximum value at pH < 8. This maximum was insensitive to pH between 4 to 8, and ionic strength up to 1 M KCl. TSPP reduced this maximum and shifted the zero yield stress region to a lower pH, ~7. The zero yield stress state corresponded to a zeta potential with a minimum magnitude of 30 mV.
CaMnt is much less important than NaMnt due to its limited commercial applications. The time-dependent property of NaMnt gel has been studied extensively as it is exploited in many applications such as drilling mud and viscosity-modifier applications. In contrast, the time-dependent property of CaMnt suspension and the factors affecting it are largely unknown. The speciation of Ca2+ ions is one such factor to be evaluated. In the current study, pH and solids concentration were examined and then used to validate a recent theory on clay gel time dependency. The results supported the theory that a strong electrostatic double layer (EDL) repulsion in the 3-D network is needed to reorganize the structure and drive it toward the state of minimum free energy. The 12 wt.% CaMnt (STx-1b) gel displayed time-dependent behavior at pH 5 but not at its natural pH of 8.4. At pH 5, the interlayer Ca2+ ions became fully hydrated and desorbed from the platelet surface. This enhanced the EDL repulsion between the platelets. At pH >6.5, the positively charged hydrolysis product Ca(OH)+ began to form and was adsorbed, partially neutralizing the permanent layer charge and weakening the repulsion. However, at 19.4 wt.% solids, the gel displayed pronounced time-dependent behavior despite the high natural pH of 8. The platelets were much closer together, allowing the EDL force to operate and effect structural reorganization. The microstructure of these CaMnt gels showed high platelet concentrations interacting to form a relatively open structure. The microstructure of a kaolin (KGa-2) suspension which showed no time-dependent behavior even after 1 day of ageing revealed the importance of particle morphology and layer charge on time dependency. Its 3-D structure was formed by relatively thick, layered platelets with a low layer charge.
In this paper, the acoustic resonance mechanism for different axisymmetric screech modes of the underexpanded jets that impinge on an inclined plate is investigated experimentally. The ideally expanded Mach number of jets ($M_j$) ranges from 1.05 to 1.56. The nozzle-to-plate distance at the jet axis and the impingement angle are respectively set as 5.0$D$ and $30^{\circ }$, where $D$ is the nozzle exit diameter. The acoustic results show that the $M_j$ range for the A2 screech mode of impinging jets is broader than that of underexpanded free jets, and a new axisymmetric screech mode A3 appears. With the increase of $M_j$, the effect of the impinging plate on the shock cell structures of jets becomes obvious gradually, and the second suboptimal peaks are evident in the axial wavenumber spectra of mean shock structures. The coherent flow structures at screech frequencies are extracted from time-resolved schlieren images via the spectral proper orthogonal decomposition (SPOD). The axial wavenumber spectra of the selected SPOD modes suggest that the A1, A2 and A3 screech modes are respectively closed by the guided jet modes that are energized by the interactions between the Kelvin–Helmholtz wavepacket and the first three shock wavenumber peaks. The upstream- and downstream-propagating waves that constitute the screech feedback loop are analysed by applying wavenumber filters to the wavenumber spectra of SPOD modes. The frequencies of these three screech modes can be predicted by the phase constraints between the nozzle exit and the rear edge of the third shock cell. For the A3 mode, the inclined plate invades the third shock cell with the increase of $M_j$, and the phase constraint cannot be satisfied at the lower side of the jets, which leads the A3 mode to fade away. The present results suggest that external boundaries can modulate the frequency and mode of jet screech by changing the axial spacings of shock cells.
In this work, an all-fiberized and narrow-linewidth fiber amplifier with record output power and near-diffraction-limited beam quality is presented. Up to 6.12 kW fiber laser with the conversion efficiency of approximately 78.8% is achieved through the fiber amplifier based on a conventional step-index active fiber. At the maximum output power, the 3 dB spectral linewidth is approximately 0.86 nm and the beam quality factor is Mx2 = 1.43, My2 = 1.36. We have also measured and compared the output properties of the fiber amplifier employing different pumping schemes. Notably, the practical power limit of the fiber amplifier could be estimated through the maximum output powers of the fiber amplifier employing unidirectional pumping schemes. Overall, this work could provide a good reference for the optimal design and potential exploration of high-power narrow-linewidth fiber laser systems.
Reconstructing the history of elite communication in ancient China benefits from additional archaeological evidence. We combine textual analysis with new human stable carbon and nitrogen isotope data from two Chu burials in the Jingzhou area to reveal significant dietary differences among Chu nobles of the middle Warring States period (c. 350 BC). This research provides important new information on the close interaction between the aristocratic families of the Qin and Chu.
Without rapid international action to curb greenhouse gas emissions, climate scientists have predicted catastrophic sea-level rise by 2100. Globally, archaeologists are documenting the effects of sea-level rise on coastal cultural heritage. Here, the authors model the impact of 1m, 2m and 5m sea-level rise on China's coastal archaeological sites using data from the Atlas of Chinese Cultural Relics and Shanghai City's Third National Survey of Cultural Relics. Although the resulting number of endangered sites is large, the authors argue that these represent only a fraction of those actually at risk, and they issue a call to mitigate the direct and indirect effects of rising sea levels.
In this paper, an all-fiberized and narrow-linewidth 5 kW power-level fiber amplifier is presented. The laser is achieved based on the master oscillator power amplification configuration, in which the phase-modulated single-frequency laser is applied as the seed laser and a bidirectional pumping configuration is applied in the power amplifier. The stimulated Brillouin scattering, stimulated Raman scattering, and transverse mode instability effects are all effectively suppressed in the experiment. Consequently, the output power is scaled up to 4.92 kW with a slope efficiency of as high as approximately 80%. The 3-dB spectral width is about 0.59 nm, and the beam quality is measured to be M2∼1.22 at maximum output power. Furthermore, we have also conducted a detailed spectral analysis on the spectral width of the signal laser, which reveals that the spectral wing broadening phenomenon could lead to the obvious decrease of the spectral purity at certain output power. Overall, this work could provide a reference for obtaining and optimizing high-power narrow-linewidth fiber lasers.
This study introduces a new real-time kinematic (RTK) positioning method which is suitable for baselines of different lengths. The method merges carrier-phase wide-lane, and ionosphere-free observation combinations (LWLC) instead of using pseudo-range, and carrier-phase ionosphere-free combination (PCLC), or single-frequency pseudo-range and phase combination (P1L1). In a first step, the double-differenced wide-lane ambiguities were calculated and fixed using the pseudo-range and carrier-phase wide-lane combination observations. Once the double-differenced wide-lane integer ambiguities were known, the wide-lane combined observations were regarded as accurate pseudo-range observations. Subsequently, the carrier-phase wide-lane, and ionosphere-free combined observations were used to fix the double-differenced carrier-phase integer ambiguities, achieving the final RTK positioning. The RTK positioning analysis was performed for short, medium, and long baselines, using the P1L1, PCLC, and LWLC methods, respectively. For a short baseline, the LWLC method demonstrated positioning accuracy similar to the P1L1 method, and performed better than the PCLC method. For medium and long baselines, the positioning accuracy of the LWLC method was slightly higher than those of the PCLC and P1L1 methods. In conclusion, the LWLC method provided high-precision RTK positioning results for baselines with different lengths, as it used high-precision carrier-phase observations with fixed ambiguities instead of low-precision pseudo-range observations.
We construct a high-order conditional distance covariance, which generalizes the notation of conditional distance covariance. The joint conditional distance covariance is defined as a linear combination of conditional distance covariances, which can capture the joint relation of many random vectors given one vector. Furthermore, we develop a new method of conditional independence test based on the joint conditional distance covariance. Simulation results indicate that the proposed method is very effective. We also apply our method to analyze the relationships of PM2.5 in five Chinese cities: Beijing, Tianjin, Jinan, Tangshan and Qinhuangdao by the Gaussian graphical model.
The relative performance of public and private enterprises has been long debated. We construct a comprehensive violation dataset based on the EPA's Safe Drinking Water Information System to empirically investigate the compliance behavior of publicly and privately owned Public Water Systems (PWSs). Our results show that publicly owned PWSs commit significantly more Maximum Contamination Level, Treatment Technique, and Health-Related violations but fewer Monitor and Reporting violations than privately owned PWSs. We also find that municipal-level heterogeneities explain a substantial amount of variation in violation behaviors among PWSs, suggesting water supply quality depends crucially on location-specific regulations and local economic conditions.
The X-ray emissions in the interaction of 3–6 MeV Xe23+ ions into thick solid In target are measured. The projectile-to-target and target Lα/Lβ X-ray production intensity ratios are observed to strongly depend on the projectile energy. The dependence deviates from Coulomb ionization predictions, which implies the important roles of coupling between subshells and the activation of 4fσ rotational couplings for projectile energy larger than 5 MeV.
Few studies have investigated the association between maternal dietary patterns (DP) during pregnancy, derived from reduced-rank regression (RRR), and fetal growth. This study aims to identify DP during pregnancy associated with macro- and micronutrient intakes, using the RRR method, and to examine their relationship with birth weight (BW). We used data of 7194 women from a large-scale cross-sectional survey in Northwest China. Dietary protein, carbohydrate, haem Fe density and the ratio of PUFA and MUFA:SFA were used as the intermediate variables in the RRR model to extract DP. Generalised estimating equation models were applied to evaluate the associations between DP and BW and related outcomes (including BW z-score, low birth weight (LBW) and small for gestational age (SGA)). Four DP during pregnancy were identified. Socio-demographically disadvantaged pregnant women were more likely to have lower BW and lower adherence to DP1 (high legumes, soyabean products, vegetables and animal-source foods, with relative low wheat and oils). Women with medium and high adherence to DP1 had significantly increased BW (medium 28·6 (95 % CI 7·1, 50·1); high 25·2 (95 % CI 2·7, 47·6)) and BW z-score and had significantly reduced risks of LBW and SGA. The associations were stronger among women with babies <3100 g. There is no association between other DP and outcomes. Higher adherence to the DP that was high in legumes, soyabean products, vegetables and animal-source foods was associated with improved BW in the Chinese pregnant women, particularly among those with disadvantageous socio-demographic conditions.
In recent years, there has been an increasing interest in detecting disease-related rare variants in sequencing studies. Numerous studies have shown that common variants can only explain a small proportion of the phenotypic variance for complex diseases. More and more evidence suggests that some of this missing heritability can be explained by rare variants. Considering the importance of rare variants, researchers have proposed a considerable number of methods for identifying the rare variants associated with complex diseases. Extensive research has been carried out on testing the association between rare variants and dichotomous, continuous or ordinal traits. So far, however, there has been little discussion about the case in which both genotypes and phenotypes are ordinal variables. This paper introduces a method based on the γ-statistic, called OV-RV, for examining disease-related rare variants when both genotypes and phenotypes are ordinal. At present, little is known about the asymptotic distribution of the γ-statistic when conducting association analyses for rare variants. One advantage of OV-RV is that it provides a robust estimation of the distribution of the γ-statistic by employing the permutation approach proposed by Fisher. We also perform extensive simulations to investigate the numerical performance of OV-RV under various model settings. The simulation results reveal that OV-RV is valid and efficient; namely, it controls the type I error approximately at the pre-specified significance level and achieves greater power at the same significance level. We also apply OV-RV for rare variant association studies of diastolic blood pressure.
Light-absorbing impurities (LAIs, e.g. black carbon (BC), organic carbon (OC), mineral dust (MD)) deposited on snow cover reduce albedo and accelerate its melting. Northern Xinjiang (NX) is an arid and semi-arid inland region, where snowmelt leads to frequent floods that have been a serious threat to local ecological security. There is still a lack of quantitative assessments of the effects of LAIs on snowmelt in the region. This study investigates spatial variations of LAIs in snow and its effect on snow albedo, radiative forcing (RF) and snowmelt across NX. Results showed that concentrations of BC, OC (only water-insoluble OC), MD ranged from 32 to 8841 ng g−1, 77 to 8568 ng g−1 and 0.46 to 236 µg g−1, respectively. Weather Research and Forecasting Chemistry model suggested that residential emission was the largest source of BC. Snow, Ice, and Aerosol Radiative modelling showed that the average contribution of BC and MD to snow albedo reduction was 17 and 3%, respectively. RF caused by BC significantly exceeded RF caused by MD. In different scenarios, changes in snow cover duration (SCD) caused by BC and MD decreased by 1.36 ± 0.61 to 6.12 ± 3.38 d. Compared with MD, BC was the main dominant factor in reducing snow albedo and SCD across NX.
We explore the intrinsic jet opening angle (IJOA) of blazars, from the literature, we found that the blazar number density peaks around 0.5° of IJOA and declines quickly with increasing IJOA for flat spectrum radio quasars (FSRQs), while the number density has double peaks around 0.3° and 2.0° of IJOA for BL Lacs. We assume that the black hole accretion-produced jet may have the smaller IJOA (for its larger linear scale of launch region), and the BH spin-produced jet may have the larger IJOA (for its smaller launch region), such that the FSRQs are accretion dominated for their single peaked small IJOA, while the BL Lacs are either accretion or BH spin dominated for their double peaked IJOA.