We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Lactylation, a new epigenetic modification, is an important way in which lactate exerts physiological functions. There is a close relationship between increased lactylations caused by lactate and glycolysis, which can interact and play a role in disease through lactate as an intermediate mediator. Current research on lactylations has focused on histone lactylation, but non-histone lactylation also has greater research potential. Due to the ubiquity of lactate modifications in mammalian cells, an increasing number of studies have found that lactate modifications play important roles in tumour cell metabolism, gene transcription and immunity.
Methods
A systematic literature search was carried out using search key terms and synonyms. Full-paper screening was performed based on specific inclusion and exclusion criteria.
Results
Many literatures have reported that the lactylation of protein plays an important role in human diseases and is involved in the occurrence and development of human diseases.
Conclusions
This article summary the correlation between lactylation and glycolysis, histones and non-histone proteins; the relationship between lactonation modifications and tumour development; and the current existence of lactylation-related inhibitors, with a view to provide new basic research ideas and clinical therapeutic tools for lactylation-related diseases.
Escherichia albertii is an emerging foodborne enteropathogen associated with infectious diarrhoea in humans. In February 2023, an outbreak of acute gastroenteric cases was reported in a junior high school located in Hangzhou, Zhejiang province, China. Twenty-two investigated patients presented diarrhoea (22/22, 100%), abdominal pain (21/22, 95.5%), nausea (6/22, 27.3%), and vomiting (3/22, 13.6%). E. albertii strains were successfully isolated from anal swabs collected from six patients. Each isolate was classified as sequence type ST2686, harboured eae-β gene, and carried both cdtB-I and cdtB-II subtypes, being serotyped as EAOg32:EAHg4 serotype. A comprehensive whole-genome phylogenetic analysis revealed that the six isolates formed a distinct cluster, separate from other strains. These isolates exhibited minimal genetic variation, differing from one another by 0 to 1 single nucleotide polymorphism, suggesting a common origin from a single clone. To the best of our knowledge, this represented the first reported outbreak of gastroenteritis attributed to E. albertii outside of Japan on a global scale.
In the present study, we performed direct numerical simulations for a hypersonic turbulent boundary layer over the windward side of a lifting body, the HyTRV model, at Mach number $6$ and attack angle 2$^{\circ }$ to investigate the global and local turbulent features, and evaluate its difference from canonical turbulent boundary layers. By scrutinizing the instantaneous and averaged flow fields, we found that the transverse curvature on the windward side of the HyTRV model induces the transverse opposing pressure gradients that push the flow on both sides towards the windward symmetry plane, yielding significant effects of the azimuthal inhomogeneity and large-scale cross-stream circulations, moderate and azimuthal independent influences of adverse pressure gradient, and negligible impact of the mean flow three-dimensionality. Further inspecting the local turbulent statistics, we identified that the mean and fluctuating velocity become increasingly similar to the highly decelerated turbulent boundary layers over flat plates in that the mean velocity deficit is enhanced, and the outer layer Reynolds stresses are amplified as it approaches the windward symmetry plane, and prove to be self-similar under the scaling of Wei & Knopp (J. Fluid Mech., vol. 958, 2023, A9) for adverse-pressure-gradient turbulent boundary layers. Conditionally averaged Reynolds stresses based on strong sweeping and ejection events demonstrated that the Kelvin–Helmholtz instability of the strong embedded shear layer induced by the large-scale cross-stream circulations is responsible for the turbulence amplification in the outer layer. The strong Reynolds analogy that relates the mean velocity and temperature was refined to incorporate the non-canonical effects, showing considerable improvements in the accuracy of such a formula. On the other hand, the temperature fluctuations are still transported passively, as indicated by their resemblance to the velocity. The conclusions obtained in the present study provide potentially profitable information for turbulent modelling modification for the accurate predictions of skin friction and wall heat transfer.
Our goal of the paper is to investigate the Waring problem for upper triangular matrix algebras, which gives a complete solution of a conjecture proposed by Panja and Prasad in 2023.
Obesity is an important characteristic manifestation of metabolic syndrome (MetS), and body roundness index (BRI) is one of the anthropometric indicators associated with obesity. However, studies on the relationship between BRI and MetS risk are limited. We aimed to explore the relationship between baseline BRI and MetS in the USA population. Our study used data from the National Health and Nutrition Examination Survey from 1999 to 2018, ultimately enrolling and analysing 47 303 participants. Data-driven tertiles were used to categorise BRI levels, and multivariate logistic regression models were fitted to investigate the association of BRI with MetS in adults. In addition, receiver operating characteristic curve analysis was used to assess the ability of BRI to predict MetS. The distribution of BRI was different across ethnic groups with a gradual decrease in the proportion of non-Hispanic Whites and other races. In addition, BRI was significantly associated with traditional cardiovascular risk factors. Univariate regression analysis indicated BRI to be a moderate risk factor for MetS, and multivariate logistic regression analysis found that BRI remained an independent risk factor for MetS. After adjusting for confounding variables, a non-linear relationship was found between BRI levels and the prevalence of MetS. More importantly, BRI predicted MetS with the largest AUC among anthropometric measures. In summary, elevated baseline BRI levels are independently associated with the development of MetS, and baseline BRI may assist in identifying patients at risk for MetS, leading to early and optimal treatment to improve their outcomes.
The prevalence of non-suicidal self-injury (NSSI) among adolescents underscores the importance of understanding the complex factors that drive this behaviour. Framed within broader constructs of emotional regulation theories, alexithymia and peer victimisation are thought to interact to influence NSSI behaviours.
Aim
This research addresses whether alexithymia and peer victimisation serve as risk factors for NSSI and, if so, how these factors interact with each other.
Method
This quantitative study analysed data from 605 adolescents, using a range of validated self-report measures including the Toronto Alexithymia Scale. Statistical analyses including one-way analysis of variance, multiple regression and structural equation modelling were employed to scrutinise the relationships among the variables.
Results
Alexithymia and peer victimisation significantly predicted NSSI behaviours. Specifically, the ‘difficulty in identifying feelings’ subscale of alexithymia emerged as a noteworthy predictor of NSSI (P < 0.001). Peer victimisation mediated the relationship between alexithymia and NSSI, explaining approximately 24.50% of alexithymia's total effect on NSSI. In addition, age was a significant predictor of NSSI, but gender and education years were not (P > 0.05). These relationships were found to be invariant across genders.
Conclusions
This study enriches our understanding of the interplay between alexithymia, peer victimisation and NSSI, particularly within the Chinese context. Its findings have significant implications for a rethinking of alexithymia's theoretical construct and interventions targeting emotional literacy and peer dynamics among adolescents. Future research could benefit from a longitudinal design to establish causality.
This paper explores the feasibility of a break-even-class mirror referred to as BEAM (break-even axisymmetric mirror): a neutral-beam-heated simple mirror capable of thermonuclear-grade parameters and $Q\sim 1$ conditions. Compared with earlier mirror experiments in the 1980s, BEAM would have: higher-energy neutral beams, a larger and denser plasma at higher magnetic field, both an edge and a core and capabilities to address both magnetohydrodynamic and kinetic stability of the simple mirror in higher-temperature plasmas. Axisymmetry and high-field magnets make this possible at a modest scale enabling a short development time and lower capital cost. Such a $Q\sim 1$ configuration will be useful as a fusion technology development platform, in which tritium handling, materials and blankets can be tested in a real fusion environment, and as a base for development of higher-$Q$ mirrors.
Parasitoid wasps, notably egg parasitoids of the family Eupelmidae (Hymenoptera: Chalcidoidea), a key natural enemy of insect pests, offer a sustainable approach to pest management in agriculture. This study investigated the venom apparatus's developmental dynamics across 4 species of eupelmid egg parasitoids: Anastatus. japonicus, Anastatus fulloi, Mesocomys trabalae and Mesocomys albitarsis. A comprehensive anatomical investigation revealed differences in the dimensions of the venom apparatus across different developmental stages in adult females. We found that the venom apparatus of these 4 studied species consists of a venom gland and a reservoir with an associated Dufour's gland. As the length of post-emergence increases, a significant enlargement in the venom apparatus is evident across all the studied parasitoid species. Notably, M. albitarsis consistently exhibites the shortest venom gland length, whereas that of A. fulloi is the longest among the observed species. At the high day age, the width of venom glands of the 2 Mesocomys species surpasses those of the Anastatus species; for the volume of the venom reservoir, there is a steady increase in all 4 species before the age of 6–7 days, with a decline on 8th day, especially for A. japonicus. This research provided new insights into the developmental trajectories of venom apparatus in eupelmid egg parasitoids and the potential impact of venom potency on their success.
In this work, the dynamics of two-dimensional rotating Janus drops in shear flow is studied numerically using a ternary-fluid diffuse interface method. The rotation of Janus drops is found to be closely related to their deformation. A new deformation parameter $D$ is proposed to assess the significance of the drop deformation. According to the maximum value of $D$ ($D_{max}$), the deformation of rotating Janus drops can be classified into linear deformation ($D_{max}\le 0.2$) and nonlinear deformation ($D_{max}> 0.2$). In particular, $D_{max}$ in the former depends linearly on the Reynolds and capillary numbers, which can be interpreted by a mass–spring model. Furthermore, the rotation period $t_R$ of a Janus drop is found to be more sensitive to the drop deformation than to the aspect ratio of the drop at equilibrium. By introducing a corrected shear rate and an aspect ratio of drop deformation, a rotation model for Janus drops is established based on Jeffery's theory for rigid particles, and it agrees well with our numerical results.
Our previous studies have suggested that spastin, which aggregates on spindle microtubules in oocytes, may promote the assembly of mouse oocyte spindles by cutting microtubules. This action may be related to CRMP5, as knocking down CRMP5 results in reduced spindle microtubule density and maturation defects in oocytes. In this study, we found that, after knocking down CRMP5 in oocytes, spastin distribution shifted from the spindle to the spindle poles and errors in microtubule–kinetochore attachment appeared in oocyte spindles. However, CRMP5 did not interact with the other two microtubule-severing proteins, katanin-like-1 (KATNAL1) and fidgetin-like-1 (FIGNL1), which aggregate at the spindle poles. We speculate that, in oocytes, due to the reduction of spastin distribution on chromosomes after knocking down CRMP5, microtubule–kinetochore errors cannot be corrected through severing, resulting in meiotic division abnormalities and maturation defects in oocytes. This finding provides new insights into the regulatory mechanisms of spastin in oocytes and important opportunities for the study of meiotic division mechanisms.
The Wisconsin high-temperature superconductor axisymmetric mirror experiment (WHAM) will be a high-field platform for prototyping technologies, validating interchange stabilization techniques and benchmarking numerical code performance, enabling the next step up to reactor parameters. A detailed overview of the experimental apparatus and its various subsystems is presented. WHAM will use electron cyclotron heating to ionize and build a dense target plasma for neutral beam injection of fast ions, stabilized by edge-biased sheared flow. At 25 keV injection energies, charge exchange dominates over impact ionization and limits the effectiveness of neutral beam injection fuelling. This paper outlines an iterative technique for self-consistently predicting the neutral beam driven anisotropic ion distribution and its role in the finite beta equilibrium. Beginning with recent work by Egedal et al. (Nucl. Fusion, vol. 62, no. 12, 2022, p. 126053) on the WHAM geometry, we detail how the FIDASIM code is used to model the charge exchange sources and sinks in the distribution function, and both are combined with an anisotropic magnetohydrodynamic equilibrium solver method to self-consistently reach an equilibrium. We compare this with recent results using the CQL3D code adapted for the mirror geometry, which includes the high-harmonic fast wave heating of fast ions.
Post-event rumination (PER) has been seen as a key element in the persistence of social anxiety (disorder). Studies on PER-targeted intervention, e.g., cognitive restructuring (CR), has, however, received little attention in adults, not yet in youth. In addition, previous research showed that, compared to interaction, participants reported higher levels of PER after speech task. The main aim of the present study was to investigate the effect of CR targeting PER among socially anxious (Chinese) adolescents and also to compare the intervention effect between speech and interaction situations. The present study recruited a sample of 73 high socially anxious adolescents aged 12–16 years and then randomly assigned them into speech (n = 37) or interaction (n = 36) group, without control group. PER and social anxiety (SA) were measured before and after CR. Analysis of Covariance (ANCOVA) results showed that adolescents’ PER and SA symptoms were significantly improved with intervention with moderate to high effect size. Furthermore, the decrease in PER could significantly predict the improvement of SA. However, the intervention effect showed no difference between groups. Although no control group was included, one-session CR still showed its potential to improve participants’ PER and SA. Limitations and future directions were discussed.
Placental trophoblastic cells play important roles in placental development and fetal health. However, the mechanism of trophoblastic cell fusion is still not entirely clear. The level of Tspan5 in the embryo culture medium was detected using enzyme-linked immunosorbent assay (ELISA). Fusion of BeWo cells was observed by immunofluorescence. Cell fusion-related factors and EMT-related factors were identified by qRT-PCR and western blotting. Notch protein repressor DAPT was used to verify the role of Tspan5 in BeWo cells. The expression of Tspan5 was significantly increased in embryo culture medium. The fusion of BeWo cells was observed after treatment with forskolin (FSK). Cell fusion-related factors (i.e. β-hCG and syncytin 1/2) and Tspan5 were significantly increased after FSK treatment. In addition, FSK treatment promoted EMT-related protein expression in BeWo cells. Knockdown of Tspan5 inhibited cell fusion and EMT-related protein levels. Notch-1 and Jagged-1 protein levels were significantly upregulated, and the EMT process was activated by overexpression of Tspan5 in FSK-treated BeWo cells. Interestingly, blocking the Notch pathway by the repressor DAPT had the opposite results. These results indicated that Tspan5 could promote the EMT process by activating the Notch pathway, thereby causing cell fusion. These findings contribute to a better understanding of trophoblast cell syncytialization and embryonic development. Tspan5 may be used as a therapeutic target for normal placental development.
The western Mongolian Lake Zone was a Neoproterozoic to early Paleozoic volcanic arc where tuffs, lavas, fossiliferous siliciclastics, and carbonates accumulated during the early Cambrian. An uppermost Cambrian Series 2 (upper Stage 4) trilobite assemblage is described here from the Burgasutay Formation representing a continuous lower Cambrian succession at the Seer Ridge of the Great Lake Depression. The new assemblage is dominated by dorypygids and consists of 13 trilobite genera belonging to nine families including Catinouyia heyunensis new species. These fossils comprise the youngest and richest lower Cambrian trilobite assemblage in Mongolia. The composition of the Lake Zone fauna suggests its biogeographic affinity with the Siberian Platform and Altay-Sayan Foldbelt, but the presence of inouyiids also implies a connection of this region with East Gondwana.
Hormone-sensitive lipase (HSL) is one of the rate-determining enzymes in the hydrolysis of TAG, playing a crucial role in lipid metabolism. However, the role of HSL-mediated lipolysis in systemic nutrient homoeostasis has not been intensively understood. Therefore, we used CRISPR/Cas9 technique and Hsl inhibitor (HSL-IN-1) to establish hsla-deficient (hsla-/-) and Hsl-inhibited zebrafish models, respectively. As a result, the hsla-/- zebrafish showed retarded growth and reduced oxygen consumption rate, accompanied with higher mRNA expression of the genes related to inflammation and apoptosis in liver and muscle. Furthermore, hsla-/- and HSL-IN-1-treated zebrafish both exhibited severe fat deposition, whereas their expressions of the genes related to lipolysis and fatty acid oxidation were markedly reduced. The TLC results also showed that the dysfunction of Hsl changed the whole-body lipid profile, including increasing the content of TG and decreasing the proportion of phospholipids. In addition, the systemic metabolic pattern was remodelled in hsla-/- and HSL-IN-1-treated zebrafish. The dysfunction of Hsl lowered the glycogen content in liver and muscle and enhanced the utilisation of glucose plus the expressions of glucose transporter and glycolysis genes. Besides, the whole-body protein content had significantly decreased in the hsla-/- and HSL-IN-1-treated zebrafish, accompanied with the lower activation of the mTOR pathway and enhanced protein and amino acid catabolism. Taken together, Hsl plays an essential role in energy homoeostasis, and its dysfunction would cause the disturbance of lipid catabolism but enhanced breakdown of glycogen and protein for energy compensation.
COVID-19 has long-term impacts on public mental health, while few research studies incorporate multidimensional methods to thoroughly characterise the psychological profile of general population and little detailed guidance exists for mental health management during the pandemic. This research aims to capture long-term psychological profile of general population following COVID-19 by integrating trajectory modelling approaches, latent trajectory pattern identification and network analyses.
Methods
Longitudinal data were collected from a nationwide sample of 18 804 adults in 12 months after COVID-19 outbreak in China. Patient Health Questionnaire-9, Generalised Anxiety Disorder-7 and Insomnia Severity Index were used to measure depression, anxiety and insomnia, respectively. The unconditional and conditional latent growth curve models were fitted to investigate trajectories and long-term predictors for psychological symptoms. We employed latent growth mixture model to identify the major psychological symptom trajectory patterns, and ran sparse Gaussian graphical models with graphical lasso to explore the evolution of psychopathological network.
Results
At 12 months after COVID-19 outbreak, psychological symptoms generally alleviated, and five psychological symptom trajectories with different demographics were identified: normal stable (63.4%), mild stable (15.3%), mild-increase to decrease (11.7%), mild-decrease to increase (4.0%) and moderate/severe stable (5.5%). The finding indicated that there were still about 5% individuals showing consistently severe distress and approximately 16% following fluctuating psychological trajectories, who should be continuously monitored. For individuals with persistently severe trajectories and those with fluctuating trajectories, central or bridge symptoms in the network were mainly ‘motor abnormality’ and ‘sad mood’, respectively. Compared with initial peak and late COVID-19 phase, aftermath of initial peak might be a psychologically vulnerable period with highest network connectivity. The central and bridge symptoms for aftermath of initial peak (‘appetite change’ and ‘trouble of relaxing’) were totally different from those at other pandemic phases (‘sad mood’).
Conclusions
This research identified the overall growing trend, long-term predictors, trajectory classes and evolutionary pattern of psychopathological network of psychological symptoms in 12 months after COVID-19 outbreak. It provides a multidimensional long-term psychological profile of the general population after COVID-19 outbreak, and accentuates the essentiality of continuous psychological monitoring, as well as population- and time-specific psychological management after COVID-19. We believe our findings can offer reference for long-term psychological management after pandemics.
Se is an indispensable trace element for the human body, and telomere length is considered a marker of biological ageing. Previous studies have shown that dietary Se intake is associated with telomere length. However, the relationship between Se intake and telomere length in patients with diabetes has not been well studied. Therefore, this study aimed to investigate the relationship between dietary Se intake and telomere length in patients with diabetes. We extracted 878 participants with diabetes from the National Health and Nutrition Examination Survey database for 1990–2002. Dietary Se intake was assessed using the 24 h dietary recall method, and telomere length was measured using quantitative PCR. Generalised linear models were constructed to assess the relationship between dietary Se intake and telomere length. After controlling for the confounders, 1 μg increase in dietary Se intake in female patients with diabetes, and telomere length increased by 1·84 base pairs (β = 1·84 (95 % CI: 0·15, 3·53)), there was a line relationship between dietary Se intake and telomere length in female patients with diabetes and telomere length increased with increasing dietary Se intake within the range of 0–250 μg. The study demonstrates that dietary Se intake is significantly associated with telomere length only in the female population with diabetes in the USA. However, further prospective studies are required to confirm this finding.
Vitamin D is engaged in various neural processes, with low vitamin D linked to depression and cognitive dysfunction. There are gender differences in depression and vitamin D level. However, the relationship between depression, gender, vitamin D, cognition, and brain function has yet to be determined.
Methods
One hundred and twenty-two patients with major depressive disorder (MDD) and 119 healthy controls underwent resting-state functional MRI and fractional amplitude of low-frequency fluctuations (fALFF) was calculated to assess brain function. Serum concentration of vitamin D (SCVD) and cognition (i.e. prospective memory and sustained attention) were also measured.
Results
We found a significant group-by-gender interaction effect on SCVD whereby MDD patients showed a reduction in SCVD relative to controls in females but not males. Concurrently, there was a female-specific association of SCVD with cognition and MDD-related fALFF alterations in widespread brain regions. Remarkably, MDD- and SCVD-related fALFF changes mediated the relation between SCVD and cognition in females.
Conclusion
Apart from providing insights into the neural mechanisms by which low vitamin D contributes to cognitive impairment in MDD in a gender-dependent manner, these findings might have clinical implications for assignment of female patients with MDD and cognitive dysfunction to adjuvant vitamin D supplementation therapy, which may ultimately advance a precision approach to personalized antidepressant choice.
People with serious mental illness are at great risk of suicide, but little is known about the suicide rates among this population. We aimed to quantify the suicide rates among people with serious mental illness (bipolar disorder, major depression, or schizophrenia).
Methods
PubMed and Web of Science were searched to identify studies published from 1 January 1975 to 10 December 2020. We assessed English-language studies for the suicide rates among people with serious mental illness. Random-effects meta-analysis was used. Changes in follow-up time and the suicide rates were presented by a locally weighted scatter-plot smoothing (LOESS) curve. Suicide rate ratio was estimated for assessments of difference in suicide rate by sex.
Results
Of 5014 identified studies, 41 were included in this analysis. The pooled suicide rate was 312.8 per 100 000 person-years (95% CI 230.3–406.8). Europe was reported to have the highest pooled suicide rate of 335.2 per 100 000 person-years (95% CI 261.5–417.6). Major depression had the highest suicide rate of 534.3 per 100 000 person-years (95% CI 30.4–1448.7). There is a downward trend in suicide rate estimates over follow-up time. Excess risk of suicide in males was found [1.90 (95% CI 1.60–2.25)]. The most common suicide method was poisoning [21.9 per 100 000 person-years (95% CI 3.7–50.4)].
Conclusions
The suicide rates among people with serious mental illness were high, highlighting the requirements for increasing psychological assessment and monitoring. Further study should focus on region and age differences in suicide among this population.