We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
Autism spectrum disorder (ASD) is defined by the American Psychiatric Association as persistent deficits in social communication and interactions and restricted, repetitive patterns of behavior, interests, or activities. There are many potential etiological causes for ASD. In the United States, the combined prevalence of ASD per 1,000 children was 23 in 2018. The American Academy of Pediatrics (AAP) recommends screening specifically for ASD during regular doctor visits at 18 and 24 months to ensure systematic monitoring for early signs of ASD. Most reported concerns from parents relate to abnormal childhood developmental trajectory and history of unusual behaviors, with variability in ages when features suggestive of ASD are most noticeable. Behavioral interventions for ASD focus on minimizing the effects of developmental delays and maximizing speech/language, motor, social-emotional, and cognitive skills. Medications can be used to target comorbid conditions or problematic behaviors that interfere with progress or pose safety concerns. The financial burden on families of children with ASD is correlated with the existing societal financial safety net. Poorer outcomes are expected when the family carries a substantial share of the cost to support the development of children with ASD, especially in lower-income households.
In this article, we present a general theorem and proof for the global identification of composed CFA models. They consist of identified submodels that are related only through covariances between their respective latent factors. Composed CFA models are frequently used in the analysis of multimethod data, longitudinal data, or multidimensional psychometric data. Firstly, our theorem enables researchers to reduce the problem of identifying the composed model to the problem of identifying the submodels and verifying the conditions given by our theorem. Secondly, we show that composed CFA models are globally identified if the primary models are reduced models such as the CT-C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(M-1)$$\end{document} model or similar types of models. In contrast, composed CFA models that include non-reduced primary models can be globally underidentified for certain types of cross-model covariance assumptions. We discuss necessary and sufficient conditions for the global identification of arbitrary composed CFA models and provide a Python code to check the identification status for an illustrative example. The code we provide can be easily adapted to more complex models.
A healthcare-associated group A Streptococcus outbreak involving six patients, four healthcare workers, and one household contact occurred in the labor and delivery unit of an academic medical center. Isolates were highly related by whole genome sequencing. Infection prevention measures, healthcare worker screening, and chemoprophylaxis of those colonized halted further transmission.
Novel approaches are needed to understand and disrupt Mycobacterium tuberculosis transmission. In this proof-of-concept study, we investigated the use of environmental air samplings to detect and quantify M. tuberculosis in different clinic settings in a high-burden area.
Design:
Cross-sectional, environmental sampling.
Setting:
Primary-care clinic.
Methods:
A portable, high-flow dry filter unit (DFU) was used to draw air through polyester felt filters for 2 hours. Samples were collected in the waiting area and TB room of a primary care clinic. Controls included sterile filters placed directly into collection tubes at the DFU sampling site, and filter samplings performed outdoors. DNA was extracted from the filters, and droplet digital polymerase chain reaction (ddPCR) was used to quantify M. tuberculosis DNA copies. Carbon dioxide (CO2) data loggers captured CO2 concentrations in the sampled areas.
Results:
The median sampling time was 123 minutes (interquartile range [IQR], 121–126). A median of 121 (IQR, 35–243) M. tuberculosis DNA copies were obtained from 74 clinic samplings, compared to a median of 3 (IQR, 1–33; P < .001) obtained from 47 controls. At a threshold of 320 DNA copies, specificity was 100%, and 18% of clinic samples would be classified as positive.
Conclusions:
This proof-of-concept study suggests that the potential for airborne M. tuberculosis detection based on M. tuberculosis DNA copy yield to enable the identification of high-risk transmission locations. Further optimization of the M. tuberculosis extraction technique and ddPCR data analysis would improve detection and enable robust interpretation of these data.
Accumulating evidence suggests beneficial effects of media stories featuring individuals mastering their suicidal crises, but effects have not been assessed for psychiatric patients.
Methods
We randomized n = 172 adult psychiatric patients (n = 172, 97.1% inpatients) to read an educative article featuring a person mastering a suicidal crisis (n = 92) or an unrelated article (n = 80) in a single-blind randomized controlled trial. Questionnaire data were collected before (T1) and after exposure (T2) as well as 1 week later (study end-point, T3). The primary outcome was suicidal ideation as assessed with the Reasons for Living Inventory; secondary outcomes were help-seeking intentions, mood, hopelessness, and stigmatization. Differences between patients with affective versus other diagnoses were explored based on interaction tests.
Results
We found that patients with affective disorders (n = 99) experienced a small-sized reduction of suicidal ideation at 1-week follow up (mean difference to control group [MD] at T3 = −0.17 [95% CI −0.33, −0.03], d = −0.15), whereas patients with nonaffective diagnoses (n = 73) experienced a small-sized increase (T2: MD = 0.24 [95% CI 0.06, 0.42], d = 0.19). Intervention group participants further experienced a nonsustained increase of help-seeking intentions (T2: MD = 0.53 [95% CI 0.11, 0.95], d = 0.19) and a nonsustained deterioration of mood (T2: MD = −0.14 [95% CI −0.27, −0.02], d = −0.17).
Conclusions
This study suggests that patients with affective disorders appear to benefit from media materials featuring mastery of suicidal crises. More research is needed to better understand which patient groups are at possible risk of unintended effects.
As two particles approach each other, the continuum lubrication force diverges, with decreasing separation preventing contact. However, for separations comparable to the mean free path of the gas, $\lambda$, non-continuum effects cause the lubrication force to diverge more slowly with decreasing separation distance, allowing for contact in finite time. The first study of this phenomenon was done by Sundararajakumar & Koch (J. Fluid Mech., vol. 313, 1996, pp. 238–308) for two particles moving along their line of centres. We extend their normal motion study to include tangential motions. For small Knudsen number $Kn=\lambda / a$, where $a$ is the harmonic mean of the two particle radii, we use a matched asymptotic expansion technique to obtain the non-continuum forces and torques for tangential motions of spheres separated by distances within the lubrication regime that are at or below the mean free path of the gas. The hydrodynamic resistivity functions are fitted to provide a uniformly valid approximation that smoothly transitions between the continuum multipole and non-continuum lubrication expressions for the forces and torques as the minimum gap between the particles $h_0$ varies from values of $O(a)$ to values of $O(\lambda )$. These functions, in combination with the result by Sundararajakumar & Koch (J. Fluid Mech., vol. 313, 1996, pp. 238–308) and the classical work by Jeffrey & Onishi (J. Fluid Mech., vol. 139, 1984, pp. 261–290), yield a complete formulation for the hydrodynamic interactions of two spheres at all separations, from non-interacting spheres in the extreme far field through all the transitions that occur up to contact. We apply the new formulation to the classical case of a particle settling parallel to a vertical wall. The continuum Stokes equation predicts a settling speed that decreases with decreasing gap separation and vanishes at contact, whereas the non-continuum model developed herein predicts a finite settling speed at contact.
This study sought to conduct a comprehensive search for genetic risk of cognitive decline in the context of geriatric depression.
Design:
A genome-wide association study (GWAS) analysis in the Neurocognitive Outcomes of Depression in the Elderly (NCODE) study.
Setting:
Longitudinal, naturalistic follow-up study.
Participants:
Older depressed adults, both outpatients and inpatients, receiving care at an academic medical center.
Measurements:
The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) neuropsychological battery was administered to the study participants at baseline and a minimum of twice within a subsequent 3-year period in order to measure cognitive decline. A GWAS analysis was conducted to identify genetic variation that is associated with baseline and change in the CERAD Total Score (CERAD-TS) in NCODE.
Results:
The GWAS of baseline CERAD-TS revealed a significant association with an intergenic single-nucleotide polymorphism (SNP) on chromosome 6, rs17662598, that surpassed adjustment for multiple testing (p = 3.7 × 10−7; false discovery rate q = 0.0371). For each additional G allele, average baseline CERAD-TS decreased by 8.656 points. The most significant SNP that lies within a gene was rs11666579 in SLC27A1 (p = 1.1 × 10−5). Each additional copy of the G allele was associated with an average decrease of baseline CERAD-TS of 4.829 points. SLC27A1 is involved with processing docosahexaenoic acid (DHA), an endogenous neuroprotective compound in the brain. Decreased levels of DHA have been associated with the development of Alzheimer’s disease. The most significant SNP associated with CERAD-TS decline over time was rs73240021 in GRXCR1 (p = 1.1 × 10−6), a gene previously linked with deafness. However, none of the associations within genes survived adjustment for multiple testing.
Conclusions:
Our GWAS of cognitive function and decline among individuals with late-life depression (LLD) has identified promising candidate genes that, upon replication in other cohorts of LLD, may be potential biomarkers for cognitive decline and suggests DHA supplementation as a possible therapy of interest.
Serum-antibodies against an organ specific CNS antigen as well as against serotonin and gangliosides (Gm 1) were analysed by ELISA in 34 patients with schizophrenia, ten patients with schizoaffective psychosis and 13 patients with major depressive disorder. Sixty-two patients with various rheumatic disorders and 32 blood donors were included in the study as controls. Sixty-two percent of the 13 patients with major depressive disorder had antibodies to serotonin and 69% to gangliosides, whereas antibody positive sera was only found in 38% of the 34 patients with schizophrenia. The same antibodies were found in only 6% (antibodies to serotonin) and 13% (antibodies to gangliosides) of the 32 blood donors and in a similar frequency in patients with schizoaffective psychosis. Organ specific antibodies to CNS-antigen could not be detected in the psychiatric patient group at any significant level. It is speculated that auto-immune reactions towards a serotonin receptor may be involved in the etiopathogenesis of major depressive disorder.
In a representative nationwide survey, the Psychiatry and Migration Working Group of the German Federal Conference of Psychiatric Hospital Directors (Bundesdirektorenkonferenz) examined the use of inpatient psychiatric and psychotherapeutic services in Germany by patients of immigrant origin. Questionnaires were sent to a total of 350 general hospital psychiatric clinics throughout Germany, and 131 clinics responded. As shown by the 2005 Microcensus [22], almost one-fifth (18.6%) of the German population is of immigrant origin. In our study, persons of immigrant origin comprised 17% of patients in the responding facilities. This indicates that the percentage of inpatient psychiatric services used by patients of immigrant origin is almost proportionate to these patients’ percentage of the general population. The largest group of immigrant patients in our study were those of Russian heritage, followed by patients of Turkish, Arabic, or other origin. Almost two-thirds of the immigrant patients were born in Germany, and a considerably larger percentage were German citizens (74%). Sixty-two per cent of all patients of immigrant origin spoke a language other than German (e.g. Russian, Turkish, Polish) at home. Patients of immigrant origin were significantly more likely to receive an ICD-10 F2 diagnosis, and it was precisely patients with this diagnosis who were observed to experience difficulties in communication with caregivers.
The plasma membranes of cells are thin viscous sheets in which some transmembrane proteins have two-dimensional mobility and some are immobilized. Previous studies have shown that immobile proteins retard the short-time diffusivity of mobile particles through hydrodynamic interactions and that steric effects of immobile proteins reduce the long-time diffusivity in a model that neglects hydrodynamic interactions. We present a rigorous derivation of the long-time diffusivity of a single mobile protein interacting hydrodynamically and thermodynamically with an array of immobile proteins subject to periodic boundary conditions. This method is based on a finite element method (FEM) solution of the probability density of the mobile protein diffusing with a position-dependent mobility determined through a multipole solution of Stokes equations. The simulated long-time diffusivity in square arrays decreases as the spacing in the array approaches the particle size in a manner consistent with a lubrication analysis. In random arrays, steric effects lead to a percolation threshold volume fraction above which long-time diffusion is arrested. The FEM/multipole approach is used to compute the long-time diffusivity far away from this threshold. An approximate analysis of mobile protein diffusion through a network of pores connected by bonds with resistances determined by the FEM/multipole calculations is then used to explore higher immobile area fractions and to evaluate the finite simulation cell size scaling behaviour of diffusion near the percolation threshold. Surprisingly, the ratio of the long-time diffusivity to the spatially averaged short-time diffusivity in these two-dimensional fixed arrays is higher in the presence of hydrodynamic interactions than in their absence. Finally, the implications of this work are discussed, including the possibility of using the methods developed here to investigate more complex diffusive phenomena observed in cell membranes.
Tail lesions caused by tail biting are a widespread welfare issue in pig husbandry. Determining their prevalence currently involves labour intensive, subjective scoring methods. Increased societal interest in tail lesions requires fast, reliable and cheap systems for assessing tail status. In the present study, we aimed to test the reliability of neural networks for assessing tail pictures from carcasses against trained human observers. Three trained observers scored tail lesions from automatically recorded pictures of 13 124 pigs. Nearly all pigs had been tail docked. Tail lesions were classified using a 4-point score (0=no lesion, to 3=severe lesion). In addition, total tail loss was recorded. Agreement between observers was tested prior and during the assessment in a total of seven inter-observer tests with 80 pictures each. We calculated agreement between observer pairs as exact agreement (%) and prevalence-adjusted bias-adjusted κ (PABAK; value 1=optimal agreement). Out of the 13 124 scored pictures, we used 80% for training and 20% for validating our neural networks. As the position of the tail in the pictures varied (high, low, left, right), we first trained a part detection network to find the tail in the picture and select a rectangular part of the picture which includes the tail. We then trained a classification network to categorise tail lesion severity using pictures scored by human observers whereby the classification network only analysed the selected picture parts. Median exact agreement between the three observers was 80% for tail lesions and 94% for tail loss. Median PABAK for tail lesions and loss were 0.75 and 0.87, respectively. The agreement between classification by the neural network and human observers was 74% for tail lesions and 95% for tail loss. In other words, the agreement between the networks and human observers were very similar to the agreement between human observers. The main reason for disagreement between observers and thereby higher variation in network training material were picture quality issues. Therefore, we expect even better results for neural network application to tail lesions if training is based on high quality pictures. Very reliable and repeatable tail lesion assessment from pictures would allow automated tail classification of all pigs slaughtered, which is something that some animal welfare labels would like to do.
Samples of the mineral pyroaurite, formed from the weathering of partially serpentinised harzburgite (olivine + pyroxene) were found in an arid region of the Sultanate of Oman. These were either golden or silver in colour depending on the horizon from which they were derived. Chemical analysis showed that the colour variation was primarily due to the differing conditions in the hydrological environment. The golden colour was attributed to small Fe(III) oxide particles detected by Mössbauer spectroscopy. In addition, the samples were examined by X-ray diffraction, scanning electron microscopy, and glycerol intercalation. These results were compared with a synthetic pyroaurite sample prepared under conditions (previously reported) similar to those in nature. These conditions are shown to approximate to those found in the hydrological environment in the zones of the natural pyroaurite formation.
Trace element variations in stream sediments from an area of 76 000 km2 in central Colorado are used to identify uraniferous granitoids on the basis of whole rock geochemical criteria developed to distinguish barren from metalliferous granitoids in Britain. These criteria (which include enhanced Ba, Be, Cs, Cs/Ba, K, La/Eu, Li, Lu/Eu, Nb, Rb, Rb/K, low Sr and Mg, and RE patterns with marked negative Eu anomalies) are used to formulate an index based on the Pikes Peak batholith of the Front Range as a type uranium source rock.
Uraniferous granitoids in Colorado, which are associated with sedimentary basins containing major uranium mineralization, are identified using this index which may be applicable to the interpretation of stream sediments from elsewhere. The use of stream sediment geochemistry as an exploration method for similar uranium source rocks, which may indicate potential uranium provinces, is thus possible.
The secondary instability in the wake of a two-dimensional blunt body with a chord to thickness ratio of 46.5 was experimentally investigated for Reynolds numbers of 3500, 5200 and 7000 based on the blunt trailing edge height $h$. Planar, stereoscopic and high-speed particle image velocimetry (PIV) measurements were performed to characterise the wake and upstream boundary layer. The same mode B secondary instability that is found in the cylinder wake was found to be present in the wake of the elongated body studied here. The most probable wavelength of the secondary instability, defined as the spanwise distance between adjacent streamwise vortex pairs in the wake, was found to range from $0.7h$ to $0.8h$ by applying a spatial autocorrelation to the spanwise–wall-normal instantaneous fields of the $Q$-criterion. The temporal evolution of the secondary wake vortices was investigated using time-resolved stereoscopic PIV measurements and it was shown that the vortices maintain both their directions of rotation and spanwise positions during the primary vortex shedding cycles. In agreement with previous literature, the secondary instability did not greatly change as the upstream boundary layer transitioned from laminar to turbulent. Moreover, any upstream boundary layer structures were found to rapidly evolve into wake structures just past the blunt trailing edge. The wavelength of the secondary instability was shown to match the spanwise distance between adjacent low-speed zones of streamwise velocity in the wake. These undulating velocity patterns proved to be a viable method for determining the secondary instability wavelength; however, this type of analysis is highly sensitive to the energy content used for data reconstruction when proper orthogonal decomposition is applied beforehand.
Avian influenza virus (AIV) subtypes H5 and H7 can infect poultry causing low pathogenicity (LP) AI, but these LPAIVs may mutate to highly pathogenic AIV in chickens or turkeys causing high mortality, hence H5/H7 subtypes demand statutory intervention. Serological surveillance in the European Union provides evidence of H5/H7 AIV exposure in apparently healthy poultry. To identify the most sensitive screening method as the first step in an algorithm to provide evidence of H5/H7 AIV infection, the standard approach of H5/H7 antibody testing by haemagglutination inhibition (HI) was compared with an ELISA, which detects antibodies to all subtypes. Sera (n = 1055) from 74 commercial chicken flocks were tested by both methods. A Bayesian approach served to estimate diagnostic test sensitivities and specificities, without assuming any ‘gold standard’. Sensitivity and specificity of the ELISA was 97% and 99.8%, and for H5/H7 HI 43% and 99.8%, respectively, although H5/H7 HI sensitivity varied considerably between infected flocks. ELISA therefore provides superior sensitivity for the screening of chicken flocks as part of an algorithm, which subsequently utilises H5/H7 HI to identify infection by these two subtypes. With the calculated sensitivity and specificity, testing nine sera per flock is sufficient to detect a flock seroprevalence of 30% with 95% probability.
The Society of Precision Agriculture Australia Inc. (SPAA) is recognised as a leading, grower driven farming group in Australia. As an organisation it provides programs and services to its members and wider industry to promote the development and adoption of Precision Agriculture (PA) technologies as a means of enhancing the profitability and sustainability of agricultural production systems. This is achieved through publishing Australia’s only PA-dedicated magazine, delivering field days, seminars and conducting on-farm PA demonstrations and experiments. SPAA provides farmers with an independent source of advice on new concepts and equipment. The grains industry was the springboard for initial adoption, with winegrapes, horticulture and the sugar industry the focus sectors for further expansion. The purpose of this paper is to share the SPAA experience with a view to assisting the development of similar organisations in other countries
Ion angular current and energy distributions are important parameters for ion thrusters, which are typically measured at a few tens of centimetres to a few metres distance from the thruster exit. However, fully kinetic particle-in-cell (PIC) simulations are not able to simulate such domain sizes due to high computational costs. Therefore, a parallelisation strategy of the code is presented to reduce computational time. The calculated ion beam angular distributions in the plume region are quite sensitive to boundary conditions of the potential, possible additional source contributions (e.g. from secondary electron emission at vessel walls) and charge exchange collisions. Within this work a model for secondary electrons emitted from the vessel wall is included. In order to account for limits of the model due to its limited domain size, a correction of the simulated angular ion energy distribution by the potential boundary is presented to represent the conditions at the location of the experimental measurement in $1~\text{m}$ distance. In addition, a post-processing procedure is suggested to include charge exchange collisions in the plume region not covered by the original PIC simulation domain for the simulation of ion angular distributions measured at $1~\text{m}$ distance.