We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Critical action – action to dismantle oppression and seek justice – is often motivated by and in response to being subjected to racism. Indeed, critical action can be an adaptive coping response to racism, such that critical action might reduce the negative impacts of racism on the individual. Further, the goal of critical action, at its core, is to eliminate racism and its coconspiring forms of oppression, eradicating the root source of harm to marginalized individuals and communities. In this chapter, we provide an overview of current research that has examined how racism is related to critical action for racially marginalized youth. We consider racism as a system of oppression that manifests through culture, institutions, and individuals, along with stress responses to racism. We then provide recommendations for future research and practice to extend our understanding of if, when, and how experiencing racism motivates or detracts from youth critical action.
This study reviewed all rhinology clinical negligence claims in the National Health Service in England between 2013 and 2018.
Method
All clinical negligence claims held by National Health Service Resolution relating to rhinology in England between 1 April 2013 and 1 April 2018 were reviewed.
Results
There were 171 rhinology related claims with a total estimated potential cost of £13.6 million. There were 119 closed claims (70 per cent) with a total cost of £2.3 million, of which 55 claims resulted in payment of damages. Over three quarters of all rhinology claims were associated with surgery (n = 132). Claims associated with endoscopic sinus surgery had the highest mean cost per claim (£172 978). Unnecessary pain (33.9 per cent) and unnecessary operation (28.1 per cent) were the most commonly cited patient injuries.
Conclusion
Patient education and consent have been highlighted as key areas for improvement from this review of rhinology related clinical negligence claims. A shift in clinical practice towards shared decision making could reduce litigation in rhinology.
Seeman, Morris, and Summers misrepresent or misunderstand the arguments we have made, as well as their own previous work. Here, we correct these inaccuracies. We also reiterate our support for hypothesis-driven and evidence-based research.
Kinetoplastid parasites are responsible for both human and animal diseases across the globe where they have a great impact on health and economic well-being. Many species and life cycle stages are difficult to study due to limitations in isolation and culture, as well as to their existence as heterogeneous populations in hosts and vectors. Single-cell transcriptomics (scRNA-seq) has the capacity to overcome many of these difficulties, and can be leveraged to disentangle heterogeneous populations, highlight genes crucial for propagation through the life cycle, and enable detailed analysis of host–parasite interactions. Here, we provide a review of studies that have applied scRNA-seq to protozoan parasites so far. In addition, we provide an overview of sample preparation and technology choice considerations when planning scRNA-seq experiments, as well as challenges faced when analysing the large amounts of data generated. Finally, we highlight areas of kinetoplastid research that could benefit from scRNA-seq technologies.
To identify the intracochlear electrode position in cochlear implant recipients and determine the correlation to speech perception for two peri-modiolar electrode arrays.
Methods
Post-operative cone-beam computed tomography images of 92 adult recipients of the ‘CI512’ electrode and 18 adult recipients of the ‘CI532’ electrode were analysed. Phonemes scores were recorded pre-implantation, and at 3 and 12 months post-implantation.
Results
All CI532 electrodes were wholly within scala tympani. Of the 79 CI512 electrodes intended to be in scala tympani, 58 (73 per cent) were in scala tympani, 14 (17 per cent) were translocated and 7 (9 per cent) were wholly in scala vestibuli. Thirteen CI512 electrodes were deliberately inserted into scala vestibuli. Speech perception scores for post-lingual recipients were higher in the scala tympani group (69.1 per cent) compared with the scala vestibuli (54.2 per cent) and translocation (50 per cent) groups (p < 0.05). Electrode location outside of scala tympani independently resulted in a 10.5 per cent decrease in phoneme scores.
Conclusion
Cone-beam computed tomography was valuable for demonstrating electrode position. The rate of scala tympani insertion was higher in CI532 than in CI512 electrodes. Scala vestibuli insertion and translocation were associated with poorer speech perception outcomes.
To investigate the effectiveness and usability of automated procedural guidance during virtual temporal bone surgery.
Methods:
Two randomised controlled trials were performed to evaluate the effectiveness, for medical students, of two presentation modalities of automated real-time procedural guidance in virtual reality simulation: full and step-by-step visual presentation of drillable areas. Presentation modality effectiveness was determined through a comparison of participants’ dissection quality, evaluated by a blinded otologist, using a validated assessment scale.
Results:
While the provision of automated guidance on procedure improved performance (full presentation, p = 0.03; step-by-step presentation, p < 0.001), usage of the two different presentation modalities was vastly different (full presentation, 3.73 per cent; step-by-step presentation, 60.40 per cent).
Conclusion:
Automated procedural guidance in virtual temporal bone surgery is effective in improving trainee performance. Step-by-step presentation of procedural guidance was engaging, and therefore more likely to be used by the participants.
A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10 Hz. Target availability and technical issues related to the interaction environment could become a bottleneck for the exploitation of such facilities. In this paper, we report on target needs for three different classes of experiments: dynamic compression physics, electron transport and isochoric heating, and laser-driven particle and radiation sources. We also review some of the most challenging issues in target fabrication and high repetition rate operation. Finally, we discuss current target supply strategies and future perspectives to establish a sustainable target provision infrastructure for advanced laser facilities.
The Middle Cambrian Spence Shale Member (Langston Formation) and Wheeler and Marjum Formations of Utah are known to contain a diverse soft-bodied fauna, but important new paleontological material continues to be uncovered from these strata. New specimens of anomalocaridids include the largest and smallest near complete examples yet reported from Utah. New material of stem group arthropods includes two new genera and species of arachnomorphs: Nettapezoura basilika and Dicranocaris guntherorum. Other new arachnomorph material includes a new species of Leanchoilia comparable to L. protogonia Simonetta, 1970; Leanchoilia superlata? Walcott, 1912; Sidneyia Walcott, 1911a; and Mollisonia symmetrica Walcott, 1912. L. protogonia from the Burgess Shale is confirmed as a separate species and is not a composite fossil. The first example of the trilobite Elrathia kingii preserving traces of the appendages is described. In addition, new material of the bivalved arthropods Canadaspis Novozhilov in Orlov, 1960; Branchiocaris Briggs, 1976; Waptia Walcott, 1912; and Isoxys Walcott, 1890 is described.
We have compiled a catalogue of H ii regions detected with the Murchison Widefield Array between 72 and 231 MHz. The multiple frequency bands provided by the Murchison Widefield Array allow us identify the characteristic spectrum generated by the thermal Bremsstrahlung process in H ii regions. We detect 306 H ii regions between 260° < l < 340° and report on the positions, sizes, peak, integrated flux density, and spectral indices of these H ii regions. By identifying the point at which H ii regions transition from the optically thin to thick regime, we derive the physical properties including the electron density, ionised gas mass, and ionising photon flux, towards 61 H ii regions. This catalogue of H ii regions represents the most extensive and uniform low frequency survey of H ii regions in the Galaxy to date.
We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the CODE. However, for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver DCBs. The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 min. Also the receiver DCBs are estimated for selected Geoscience Australia GPS receivers, located at Murchison Radio Observatory, Yarragadee, Mount Magnet and Wiluna. The ionospheric gradients estimated from GPS are compared with that inferred from MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.
GLEAM, the GaLactic and Extragalactic All-sky MWA survey, is a survey of the entire radio sky south of declination + 25° at frequencies between 72 and 231 MHz, made with the MWA using a drift scan method that makes efficient use of the MWA’s very large field-of-view. We present the observation details, imaging strategies, and theoretical sensitivity for GLEAM. The survey ran for two years, the first year using 40-kHz frequency resolution and 0.5-s time resolution; the second year using 10-kHz frequency resolution and 2 s time resolution. The resulting image resolution and sensitivity depends on observing frequency, sky pointing, and image weighting scheme. At 154 MHz, the image resolution is approximately 2.5 × 2.2/cos (δ + 26.7°) arcmin with sensitivity to structures up to ~ 10° in angular size. We provide tables to calculate the expected thermal noise for GLEAM mosaics depending on pointing and frequency and discuss limitations to achieving theoretical noise in Stokes I images. We discuss challenges, and their solutions, that arise for GLEAM including ionospheric effects on source positions and linearly polarised emission, and the instrumental polarisation effects inherent to the MWA’s primary beam.
The Murchison Widefield Array is a Square Kilometre Array Precursor. The telescope is located at the Murchison Radio–astronomy Observatory in Western Australia. The MWA consists of 4 096 dipoles arranged into 128 dual polarisation aperture arrays forming a connected element interferometer that cross-correlates signals from all 256 inputs. A hybrid approach to the correlation task is employed, with some processing stages being performed by bespoke hardware, based on Field Programmable Gate Arrays, and others by Graphics Processing Units housed in general purpose rack mounted servers. The correlation capability required is approximately 8 tera floating point operations per second. The MWA has commenced operations and the correlator is generating 8.3 TB day−1 of correlation products, that are subsequently transferred 700 km from the MRO to Perth (WA) in real-time for storage and offline processing. In this paper, we outline the correlator design, signal path, and processing elements and present the data format for the internal and external interfaces.
The Murchison Widefield Array is a new low-frequency interferometric radio telescope built in Western Australia at one of the locations of the future Square Kilometre Array. We describe the automated radio-frequency interference detection strategy implemented for the Murchison Widefield Array, which is based on the aoflagger platform, and present 72–231 MHz radio-frequency interference statistics from 10 observing nights. Radio-frequency interference detection removes 1.1% of the data. Radio-frequency interference from digital TV is observed 3% of the time due to occasional ionospheric or atmospheric propagation. After radio-frequency interference detection and excision, almost all data can be calibrated and imaged without further radio-frequency interference mitigation efforts, including observations within the FM and digital TV bands. The results are compared to a previously published Low-Frequency Array radio-frequency interference survey. The remote location of the Murchison Widefield Array results in a substantially cleaner radio-frequency interference environment compared to Low-Frequency Array’s radio environment, but adequate detection of radio-frequency interference is still required before data can be analysed. We include specific recommendations designed to make the Square Kilometre Array more robust to radio-frequency interference, including: the availability of sufficient computing power for radio-frequency interference detection; accounting for radio-frequency interference in the receiver design; a smooth band-pass response; and the capability of radio-frequency interference detection at high time and frequency resolution (second and kHz-scale respectively).
The science cases for incorporating high time resolution capabilities into modern radio telescopes are as numerous as they are compelling. Science targets range from exotic sources such as pulsars, to our Sun, to recently detected possible extragalactic bursts of radio emission, the so-called fast radio bursts (FRBs). Originally conceived purely as an imaging telescope, the initial design of the Murchison Widefield Array (MWA) did not include the ability to access high time and frequency resolution voltage data. However, the flexibility of the MWA’s software correlator allowed an off-the-shelf solution for adding this capability. This paper describes the system that records the 100 μs and 10 kHz resolution voltage data from the MWA. Example science applications, where this capability is critical, are presented, as well as accompanying commissioning results from this mode to demonstrate verification.
Water supply-associated cryptosporidiosis outbreaks have decreased in England since the application of risk reduction measures to public water supplies. We hypothesized that smaller outbreaks were occurring which could be better detected by enhanced surveillance. Rolling analysis of detailed questionnaire data was applied prospectively in a population of 2·2 million in the south of England in 2009 and 2010. Detection of spatiotemporal clusters using SaTScan was later undertaken retrospectively. Together these approaches identified eight outbreaks, compared to an expectation of less than one based on national surveillance data. These outbreaks were small and associated with swimming pool use or, less commonly, direct (e.g. petting-farm) contact with animals. These findings suggest that frequent small-scale transmission in swimming pools is an important contributor to disease burden. Identification of swimming pool-level risk factors may inform preventative measures. These findings and the approaches described may be applicable to many other populations and to some other diseases.
The main purpose of this study was to investigate the psychological and functional impact attributed to acoustic neuroma symptoms.
Materials and methods:
A sample of 207 acoustic neuroma patients completed a study-specific questionnaire about the severity, frequency, and psychological and functional impact of 9 acoustic neuroma symptoms.
Results:
The survey response rate was 56.4 per cent. All symptoms had some degree of psychological impact for the majority of participants; hearing loss was the symptom most often reported to have a severe psychological impact. The majority of respondents reported functional impact attributed to hearing loss, balance disturbance, dizziness, eye problems, headache and fatigue; balance disturbance was the symptom most often reported to have a severe functional impact. For most symptoms, psychological and functional impact were related to severity and frequency.
Conclusion:
Of the acoustic neuroma symptoms investigated, hearing loss and balance disturbance were the most likely to have a severe psychological and functional impact, respectively.
Numerous techniques have been described to manage the skin and other soft tissues during bone-anchored hearing aid insertion. Previously, generally accepted techniques have sometimes led to distressing alopecia and soft tissue defects. Now, some surgeons are rejecting the originally described split skin flap in favour of a less invasive approach.
Objective:
To investigate bone-anchored hearing aid placement utilising a single, linear incision with either no or minimal underlying soft tissue reduction.
Patients and methods:
Thirty-four adults were prospectively enrolled to undergo single-stage bone-anchored hearing aid placement with this modified technique. A small, linear incision was used at the standard position and carried down through the periosteum. Standard technique was then followed with placement of an extended length abutment. Patients were reviewed regularly to assess wound healing, including evaluation with Holgers' scale.
Results:
Only 14.7 per cent of patients had a reaction score of 2 or higher. Most complications were limited to minor skin reactions that settled with silver nitrate cautery and/or antibiotics. None required revision surgery for tissue overgrowth, and there were no implant failures.
Conclusion:
Our results suggest this to be a simple and effective insertion technique with favourable cosmesis and patient satisfaction.
Significant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the southern hemisphere designed specifically to explore the low-frequency astronomical sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21-cm emission from the EoR in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.
The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80–300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3-km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper, the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.