We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Overnutrition during before and pregnancy can cause maternal obesity and raise the risk of maternal metabolic diseases during pregnancy, and in offspring. Lentinus edodes may prevent or reduce obesity. This study aimed to to assess Lentinus edodes fermented products effects on insulin sensitivity, glucose and lipid metabolism in maternal and offspring, and explore its action mechanism. A model of overnutrition during pregnancy and lactation was developed using a 60 % kcal high-fat diet in C57BL6/J female mice. Fermented Lentinus edodes (FLE) was added to the diet at concentrations of 1 %, 3 %, and 5 %. The results demonstrated that FLE to the gestation diet significantly reduced serum insulin levels and homeostatic model assessment for insulin resistance (HOMA-IR) in pregnant mice. FLE can regulate maternal lipid metabolism and reduce fat deposition. Meanwhile, the hepatic phosphoinositide-3-kinase-protein kinase (PI3K/AKT) signaling pathway was significantly activated in the maternal mice. There is a significant negative correlation between maternal FLE supplementation doses and offspring body fat percentage and visceral fat content. Furthermore, FLE supplementation significantly increased offspring weaning litter weight, significantly reduced fasting glucose level, serum insulin level, HOMA-IR and serum glucose level, significantly activated liver PI3K/AKT signaling pathway in offspring, and upregulated the expression of liver lipolytic genes adipose triglyceride lipase, hormone-sensitive lipase and carnitine palmitoyltransferase 1 mRNA. Overall, FLE supplementation can regulate maternal lipid metabolism and reduce fat deposition during pregnancy and lactation, and it may improve insulin sensitivity in pregnant mothers and offspring at weaning through activation of the PI3K/AKT signaling pathway.
Substantial changes resulting from the interaction of environmental and dietary factors contribute to an increased risk of obesity, while their specific associations with obesity remain unclear. We identified inflammation-related dietary patterns (DP) and explored their associations with obesity among urbanised Tibetan adults under significant environmental and dietary changes. Totally, 1826 subjects from the suburbs of Golmud City were enrolled in an open cohort study, of which 514 were followed up. Height, weight and waist circumference were used to define overweight and obesity. DP were derived using reduced rank regression with forty-one food groups as predictors and high-sensitivity C-reactive protein and prognostic nutritional index as inflammatory response variables. Altitude was classified as high or ultra-high. Two DP were extracted. DP-1 was characterised by having high consumptions of sugar-sweetened beverages, savoury snacks, and poultry and a low intake of tsamba. DP-2 had high intakes of poultry, pork, animal offal, and fruits and a low intake of butter tea. Participants in the highest tertiles (T3) of DP had increased risks of overweight and obesity (DP-1: OR = 1·37, 95 % CI 1·07, 1·77; DP-2: OR = 1·48, 95 % CI 1·18, 1·85) than those in the lowest tertiles (T1). Participants in T3 of DP-2 had an increased risk of central obesity (OR = 2·25, 95 % CI 1·49, 3·39) than those in T1. The positive association of DP-1 with overweight and obesity was only significant at high altitudes, while no similar effect was observed for DP-2. Inflammation-related DP were associated with increased risks of overweight and/or obesity.
In this paper, we simulate the process of two-dimensional axisymmetric fluid–structure coupling of a droplet impacting on a flexible disk. The effects of dimensionless disk stiffness (K = 0.1–1000), Weber number (We = 1–500) and contact angle (θ = 130° and 60°) on the dynamics of the droplet impacting on the flexible disk are analysed. The results indicate that there are five typical impact modes for a hydrophobic surface (θ = 130°) and four typical impact modes for a hydrophilic surface (θ = 60°) within the range of considered parameters. The analysis of spreading factor reveals that a part of the energy is transferred to the substrate, which is manifested as a weakening of the droplet spreading, when the substrate deforms downwards due to the droplet impact; the squeezing of the droplet causes a tendency to flow from the centre of the droplet to the edge, which is manifested as an enhancement of the droplet spreading, when the substrate recovers from the downward deformation. The effect of the substrate flexibility on the maximum spreading factor depends on the competition of the two mechanisms above. Based on this, a modified scaling law of βmax has been proposed by introducing the effective Weber number (Wem). The analysis of impact force demonstrates that the peak of the impact force is related to the deflection of the flexible substrate which is different from that of a rigid wall; and three typical processes of impact force variation have been summarised. In addition, unlike the rigid substrate scenario, there is an energy interaction between the droplet and the flexible substrate after impact occurs, which is classified as three typical energy transformation processes.
The assessment of seed quality and physiological potential is essential in seed production and crop breeding. In the process of rapid detection of seed viability using tetrazolium (TZ) staining, it is necessary to spend a lot of labour and material resources to explore the pretreatment and staining methods of hard and solid seeds with physical barriers. This study explores the TZ staining methods of six hard seeds (Tilia miqueliana, Tilia henryana, Sassafras tzumu, Prunus subhirtella, Prunus sibirica, and Juglans mandshurica) and summarizes the TZ staining conditions required for hard seeds by combining the difference in fat content between seeds and the kinship between species, thus providing a rapid viability test method for the protection of germplasm resources of endangered plants and the optimization of seed bank construction. The TZ staining of six species of hard seeds requires a staining temperature above 35 °C and a TZ solution concentration higher than 1%. Endospermic seeds require shorter staining times than exalbuminous seeds. The higher the fat content of the seeds, the lower the required incubation temperature and TZ concentration for staining, and the longer the staining time. And the closer the relationship between the two species, the more similar their staining conditions become. The TZ staining method of similar species can be predicted according to the genetic distance between the phylogenetic trees, and the viability of new species can be detected quickly.
Using a hand-collected sample of 18,269 equity analysts from 42 countries over the period of 2004 to 2019, we establish an intriguing negative association between a country’s institutional/economic development and its female share of equity analysts. We show that, in individualistic countries only, there is no gender gap in analyst forecast accuracy. We further show that female analysts are more skilled and more likely to drop out when underperforming in individualistic countries compared to peers in collectivistic countries. The evidence supports our hypothesis that the national cultural value of individualism encourages women to make career choices consistent with their general aversion to competition.
Clay minerals are effective adsorbents for the remediation of pesticides in wastewater due to their large superficial areas and excellent cation-exchange capabilities. However, this adsorption effect can be reduced by the accumulation of adsorbents on clay minerals, amongst other problems. Therefore, in this study, montmorillonite (Mnt) modified by layered double hydroxide (LDH) with different loading amounts was successfully prepared using an in situ method. The results from X-ray diffraction, Fourier-transform infrared spectrometry, Brunauer–Emmet–Teller (BET) and scanning electron microscopy analyses revealed that LDH structures were successfully combined with the Mnt layer and formed a porous structure. However, excess LDH still caused the aggregation and accumulation of layers. The adsorption performance of LDH@Mnt for atrazine (ATZ) and paraquat (PQ) was investigated, and the removal efficiency of the LDH@Mnt composite was higher than those of Mnt and LDH alone. The kinetic study revealed that the adsorption process fitted the pseudo-second-order model and internal diffusion model, and 3-LDH@Mnt had the greatest absorbability efficiency for both ATZ and PQ, indicating the adsorption process was controlled by the number of active sites of the adsorbent. The generalized Langmuir model accurately characterized the adsorption process of ATZ and PQ elimination in the adsorption isotherm investigation, indicating that the adsorption energies of the active sites on the adsorbents were different. 3-LDH@Mnt had better absorbability performance for ATZ/PQ, and the sorption capacities were 7.03 and 91.9 mg g–1, respectively. According to site energy distribution theory, the amount of sorption sites of the composite adsorbent was large and the average adsorption energy was high, both of which being beneficial for the adsorption of ATZ and PQ. The effects of pH, coexisting anions and reuse experiments were also tested, indicating that the LDH@Mnt composite possessed high adsorption stability. This excellent removal performance represents a promising strategy for the remediation and elimination of pesticide contaminations from the environment.
Lower limb exoskeletons (LLEs) have demonstrated their potential in delivering quantified repetitive gait training for individuals afflicted with gait impairments. A critical concern in robotic gait training pertains to fostering active patient engagement, and a viable solution entails harnessing the patient’s intrinsic effort to govern the control of LLEs. To address these challenges, this study presents an innovative online gait learning approach with an appropriate control strategy for rehabilitation exoskeletons based on dynamic movement primitives (DMP) and an Assist-As-Needed (AAN) control strategy, denoted as DMP-AAN. Specifically tailored for post-stroke patients, this approach aims to acquire the gait trajectory from the unaffected leg and subsequently generate the reference gait trajectory for the affected leg, leveraging the acquired model and the patient’s personal exertion. Compared to conventional AAN methodologies, the proposed DMP-AAN approach exhibits adaptability to diverse scenarios encompassing varying gait patterns. Experimental validation has been performed using the lower limb rehabilitation exoskeleton HemiGo. The findings highlight the ability to generate suitable control efforts for LLEs with reduced human-robot interactive force, thereby enabling highly patient-controlled gait training sessions to be achieved.
According to the public data collected from the Health Commission of Gansu Province, China, regarding the COVID-19 pandemic during the summer epidemic cycle in 2022, the epidemiological analysis showed that the pandemic spread stability and the symptom rate (the number of confirmed cases divided by the sum of the number of asymptomatic cases and the number of confirmed cases) of COVID-19 were different among 3 main epidemic regions, Lanzhou, Linxia, and Gannan; both the symptom rate and the daily instantaneous symptom rate (daily number of confirmed cases divided by the sum of daily number of asymptomatic cases and daily number of confirmed cases) in Lanzhou were substantially higher than those in Linxia and Gannan. The difference in the food sources due to the high difference of the population ethnic composition in the 3 regions was probably the main driver for the difference of the symptom rates among the 3 regions. This work provides potential values for prevention and control of COVID-19 in different regions.
Dynamic interpersonal therapy (DIT) is a brief, structured psychodynamic psychotherapy with demonstrated efficacy in treating major depressive disorder (MDD). The aim of the study was to determine whether DIT is an acceptable and efficacious treatment for MDD patients in China.
Method
Patients were randomized to 16-week treatments with either DIT plus antidepressant medication (DIT + ADM; n = 66), general supportive therapy plus antidepressant medication (GST + ADM; n = 75) or antidepressant medication alone (ADM; n = 70). The Hamilton Depression Rating Scale (HAMD) administered by blind raters was the primary efficacy measure. Assessments were completed during the acute 16-week treatment and up to 12-month posttreatment.
Results
The group × time interaction was significant for the primary outcome HAMD (F = 2.900, df1 = 10, df2 = 774.72, p = 0.001) in the acute treatment phase. Pairwise comparisons showed a benefit of DIT + ADM over ADM at weeks 12 [least-squares (LS) mean difference = −3.161, p = 0.007] and 16 (LS mean difference = −3.237, p = 0.004). Because of the unexpected high attrition during the posttreatment follow-up phase, analyses of follow-up data were considered exploratory. Differences between DIT + ADM and ADM remained significant at the 1-, 6-, and 12-month follow-up (ps range from 0.001 to 0.027). DIT + ADM had no advantage over GST + ADM during the acute treatment phase. However, at the 12-month follow-up, patients who received DIT remained less depressed.
Conclusions
Acute treatment with DIT or GST in combination with ADM was similarly efficacious in reducing depressive symptoms and yielded a better outcome than ADM alone. DIT may provide MDD patients with long-term benefits in symptom improvement but results must be viewed with caution.
It has been acknowledged that the Doppler is beneficial to the GNSS positioning of smartphones. However, analysis of Doppler precision on smartphones is insufficient. In this paper, we focus on the characteristic analysis of the raw Doppler measurement from Android smartphones. A comprehensive investigation of the Doppler was conducted. The results illustrate that the availability of Doppler is stable and higher than that of carrier measurements, which means that the Doppler-smoothed code (DSC) method is more effective. However, there is a constant bias between the Doppler and the code rate in Xiaomi MI8, which indicates that extra processing of the DSC method is necessary for this phone. Additionally, it is demonstrated that the relationship between the Doppler and C/N0 can be expressed as an exponential function, and the fitting parameters are provided. The numerical experiment in car-borne and hand-held scenes was conducted for evaluating the performance of the Doppler-aided positioning algorithm. For positioning, the improvement reaches 37 ⋅ 69%/37 ⋅ 14%/26 ⋅ 61% in the east, north and up components, respectively, after applying the Doppler aiding. For velocity estimation, the improvement reaches 29 ⋅ 62%/39 ⋅ 63%/29 ⋅ 37% in the three components, respectively.
Rationally higher population density is crucial for seeking a balance that meets lodging resistance and maximizes seed yield in mechanized direct-seeded winter canola. In this study, a split-plot experiment with two cultivars (Huayouza9 and Zhongshuang11) and eleven planting densities (12–105 plants m-2) was conducted in a two-season field experiment to evaluate the high planting density in this cropping system and improve its production efficiency. Seed yield noticeably increased in planting density up to 80 plants m-2 in Zhongshuang11 (2187 kg hm-2) and 60 plants m-2 in Huayouza9 (2943 kg hm-2). The seed yield of Huayouza9 did not differ significantly from the local target seed yield. Higher plant density curtailed the luxurious vegetative growth of individual canola plants at the density of no less than 60–80 plants m-2, and high seed yield was derived from the increased ratio of main raceme and branch seed weight in winter canola. An increase in plant densities contributed to the reinforced sunlight interception at the pod-filling stage, providing a larger canopy photosynthetic area for the rapid growth of more canola pods at higher densities (60–105 plants m-2). Lodging resistance and breaking resistance decreased sharply with the plant density increasing from 12 to 60 plants m-2 while remaining almost steady as it further increased from 60 to 105 plants m-2 for Huayouza9 and Zhongshuang11. Hence, the population density of 60 plants m-2 reached a balance between lodging resistance and maximized seed yield in mechanized direct-seeded winter canola in China.
The treatment of water containing heavy metals has attracted increasing attention because the ingestion of such water poses risks to human health. Due to their relatively large specific surface areas and surface charges, clay minerals play a significant role in the adsorption of heavy metals in water. However, the major factors that influence the adsorption rates of clay minerals are not well understood, and thus methods to predict the sorption of heavy metals by clay minerals are lacking. A method that can identify the most appropriate clay minerals for removal of a given heavy metal, based on the predicted sorption of the clay minerals, is required. This paper presents a widely applicable deep learning neural network approach that yielded excellent predictions of the influence of the sorption ratio on the adsorption of heavy metals by clay minerals. The neural network model was based on datasets of heavy-metal parameters that are available generally. It yielded highly accurate predictions of the adsorption rate based on training data from the dataset and was able to account for a wide range of input parameters. A Pearson sensitivity analysis was used to determine the contributions of individual input parameters to the adsorption rates predicted by the neural network. This newly developed method can predict the major factors influencing heavy-metal adsorption rates. The model described here could be applied in a wide range of scenarios.
Dynamics of two-dimensional flow past a rigid flat plate with a trailing closed flexible filament acting as a deformable afterbody are investigated numerically by an immersed boundary-lattice Boltzmann method for the fluid flow and a finite element method for the filament motion. The effects of Reynolds number ($Re$) and length ratio ($Lr$) on the flow patterns and dynamics of the rigid-flexible coupling system are studied. Based on our numerical results, five typical state modes have been identified in $Lr\unicode{x2013}Re$ plane in terms of the filament shape and corresponding dynamics, i.e. static deformation, micro-vibration, multi-frequency flapping, periodic flapping and chaotic flapping modes, respectively. Benefiting from the passive flow control by using the flexible filament as a deformable afterbody, the coupled system may enjoy a significant drag reduction (up to $22\,\%$) compared with bare plate scenarios ($Lr=1$). Maximum drag reduction achieved at $L_{c,{min}} \in [1.8, 2]$ is often accompanied by the onset of the system state transition. The flow characteristic and its relation to the change in hydrodynamic drag are further explored in order to reveal the underlying mechanisms of the counterintuitive dynamical behaviour of the coupled system. The scaling laws for the form drag and the friction drag, which arise from the pressure and viscous effects, respectively, are proposed to estimate the overall drag acting on the system. The results obtained in the present study may shed some light on understanding the dynamical behaviour of rigid-flexible coupling systems.
The propulsion of a pitching flexible plate in a uniform flow is investigated numerically. The effects of bending stiffness ($K$), pitching amplitude ($A_L$) and frequency ($St$) on the wake patterns, thrust generations and propulsive performances of the fluid–plate system are analysed. Four typical wake patterns, i.e. von Kármán, reversed von Kármán, deflected and chaotic wakes, emerge from various kinematics, and the $St-A_L$ wake maps are given for various $K$. The drag-to-thrust transitions (DTT) and the wake transitions (WT) between the von Kármán and reversed von Kármán wakes are examined. Results indicate that the WT and DTT boundaries can be scaled by the chord-averaged distance of travel, $\mathcal {L}$, which leads to $\mathcal {L}\times St \approx 1$ and $\mathcal {L}\times St \approx 1.2$, respectively. Further, the resonance mechanism for the performance enhancement is revealed and confirmed in a wide range of parameters. The dimensionless average speed of plate, $\mathcal {U^*}\left (=\mathcal {L}\times St\right )$, is adopted merely to characterize the propulsive performances. For the first time, the $\mathcal {U^*}$-based scaling laws for the thrust and power are revealed in pitching rigid and flexible plates for various $A_L$ and $St$. This study may deepen our understanding of biological swimming and flying, and provide a guide for bionic design.
Long-term care given to disabled older adults takes many forms, with each impacting life satisfaction through different ways. Drawing data from the 2011–2018 China Health and Retirement Longitudinal Survey, this article explores the effects of various care types on life satisfaction, with a particular focus on disabled older persons. Estimates derived from a fixed effects model with propensity score matching show that compared with formal care, informal care has significant positive effects on life satisfaction for disabled older adults. In addition, informal care has its greatest positive effect on life satisfaction on those who are mildly disabled, men and rural residents compared to their counterparts, while formal care addresses the needs of individuals with severe disability. We find that the main channels of effect occur through reduced loneliness and unhappiness, increased participation in social activities and improved physical health. This work contributes to the existing literature by demonstrating how various care types affect life satisfaction in China where filial piety, the central pillar of the Confucian ethics, is one of the common shared values among residents. These findings highlight the benefits derived from policies that promote and support the provision of informal care for older individuals. Moreover, there is a pressing need to buttress the formal care provision as a supplement to support severely disabled older adults in China.
This study uses a sample of technological mergers and acquisitions (M&As) of A-share listed companies in the five major high-tech industries from 2012 to 2016, and conducts factor analysis to measure the heterogeneity of these enterprises in terms of financial slack resources, equity resources, and governance structure. On this basis, multivariate regression analysis is utilized to explore the influence of the acquiring firms' heterogeneity on their innovation performance, and the adjustment action of absorptive capacity between heterogeneity and innovation performance. The research results show that the slack financial resources and highly centralized equity structure of enterprises are not conducive to enterprises improving their innovation performance following a technological M&A, while the impact of governance structure on innovation performance following an M&A is similarly not significant. The empirical evidence provided offer insights and a decision reference for technological M&As of high-tech enterprises.
The association between blood transfusion and ventilator-associated events (VAEs) has not been fully understood. We sought to determine whether blood transfusion increases the risk of a VAE.
Design:
Nested case-control study.
Setting:
This study was based on a registry of healthcare-associated infections in intensive care units at West China Hospital system.
Patients:
1,657 VAE cases and 3,293 matched controls were identified.
Methods:
For each case, 2 controls were randomly selected using incidence density sampling. We defined blood transfusion as a time-dependent variable, and we used weighted Cox models to calculate hazard ratios (HRs) for all 3 tiers of VAEs.
Results:
Blood transfusion was associated with increased risk of ventilator-associated complication-plus (VAC-plus; HR, 1.47; 95% CI, 1.22–1.77; P <.001), VAC-only (HR, 1.29; 95% CI, 1.01–1.65; P = .038), infection-related VAC-plus (IVAC-plus; HR, 1.78; 95% CI, 1.33–2.39; P < .001), and possible ventilator-associated pneumonia (PVAP; HR, 2.10; 95% CI, 1.10–3.99; P = .024). Red blood cell (RBC) transfusion was also associated with increased risk of VAC-plus (HR, 1.34; 95% CI, 1.08–1.65; P = .007), IVAC-plus (HR, 1.70; 95% CI, 1.22–2.36; P = .002), and PVAP (HR, 2.49; 95% CI, 1.17–5.28; P = .018). Compared to patients without transfusion, the risk of VAE was significantly higher in patients with RBC transfusions of >3 units (HR, 1.73; 95% CI, 1.25–2.40; P = .001) but not in those with RBC transfusions of 0–3 units.
Conclusion:
Blood transfusions were associated with increased risk of all tiers of VAE. The risk was significantly higher among patients who were transfused with >3 units of RBCs.
A fever clinic within a hospital plays a vital role in pandemic control because it serves as an outpost for pandemic discovery, monitoring and handling. As the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan was gradually brought under control, the fever clinic in the West Campus of Wuhan Union Hospital introduced a new model for construction and management of temporary mobile isolation wards. A traditional battlefield hospital model was combined with pandemic control regulations, to build a complex of mobile isolation wards that used adaptive design and construction for medical operational, medical waste management and water drainage systems. The mobile isolation wards allowed for the sharing of medical resources with the fever clinic. This increased the capacity and efficiency of receiving, screening, triaging and isolation and observation of patients with fever. The innovative mobile isolation wards also controlled new sudden outbreaks of COVID-19. We document the adaptive design and construction model of the novel complex of mobile isolation wards and explain its characteristics, functions and use.
The tight combination model improves the positioning accuracy of the Global Navigation Satellite System (GNSS) in complex environments by increasing the redundancy of observation. However, the ambiguity cannot be calculated directly because of the correlation between it and the phase difference inter-system bias (DISB) in the model. This paper proposes a method of DISB estimation based on the principle of maximum ratio. From the data analysis, for the standard deviation of code DISB, the improvement of the method can up to 0·179 m with the poor quality data. In addition, compared to the parameter combination method, the standard deviation of all the phase DISB was deceased with the method in the paper. About the phase DISB of GPS L1/Galileo E1, the standard deviation decreased from 0·014/0·022/0·009/0·051 cycles to 0·006/0·015/0·004/0·029 cycles of four baselines, which represents the improvement of 57·14/31·82/55·56/43·14%. About the phase DISB of GPS L1/BDS B1, the standard deviation decreased from 0·014/0·061/0·010/0·052 cycles to 0·002/0·005/0·009/0·004 cycles of four baselines, which represents the improvement of 85·71/91·80/10·00/92·31%.