We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Characterizing the structure and composition of clay minerals on the surface of Mars is important for reconstructing past aqueous processes and environments. Data from the CheMin X-ray diffraction (XRD) instrument on the Mars Science Laboratory Curiosity rover demonstrate a ubiquitous presence of collapsed smectite (basal spacing of 10 Å) in ~3.6-billion-year-old lacustrine mudstone in Gale crater, except for expanded smectite (basal spacing of 13.5 Å) at the base of the stratigraphic section in a location called Yellowknife Bay. Hypotheses to explain expanded smectite include partial chloritization by Mg(OH)2 or solvation-shell H2O molecules associated with interlayer Mg2+. The objective of this work is to test these hypotheses by measuring partially chloritized and Mg-saturated smectite using laboratory instruments that are analogous to those on Mars rovers and orbiters. This work presents Mars-analog XRD, evolved gas analysis (EGA), and visible/shortwave-infrared (VSWIR) data from three smectite standards that were Mg-saturated and partially and fully chloritized with Mg(OH)2. Laboratory data are compared with XRD and EGA data collected from Yellowknife Bay by the Curiosity rover to examine whether the expanded smectite can be explained by partial chloritization and what this implies about the diagenetic history of Gale crater. Spectral signatures of partial chloritization by hydroxy-Mg are investigated that may allow the identification of partially chloritized smectite in Martian VSWIR reflectance spectra collected from orbit or in situ by the SuperCam instrument suite on the Mars 2020 Perseverance rover. Laboratory XRD and EGA data of partially chloritized saponite are consistent with data collected from Curiosity. The presence of partially chloritized (with Mg(OH)2) saponite in Gale crater suggests brief interactions between diagenetic alkaline Mg2+-bearing fluids and some of the mudstone exposed at Yellowknife Bay, but not in other parts of the stratigraphic section. The location of Yellowknife Bay at the base of the stratigraphic section may explain the presence of alkaline Mg2+-bearing fluids here but not in other areas of Gale crater investigated by Curiosity. Early diagenetic fluids may have had a sufficiently long residence time in a closed system to equilibrate with basaltic minerals, creating an elevated pH, whereas diagenetic environments higher in the section may have been in an open system, therefore preventing fluid pH from becoming alkaline.
Exposure to environmentally transmitted parasites should increase with population density due to accumulation of infective parasites in space. However, resource competition also increases with density, lowering immunity and increasing susceptibility, offering an alternative pathway for density-dependent infection. To test the relationships between these two processes and parasitism, we examined associations between host density, resource availability, immunity, and counts of 3 common helminth parasites using a long-term study of red deer. We found evidence that immunity increased with resource availability while parasite counts declined with immunity. We also found that greater density correlated with reduced resource availability, and while density was positively associated with both strongyle and tissue worm burdens, resource availability was independently and negatively associated with the same burdens. Our results support separate roles of density-dependent exposure and susceptibility in driving infection, providing evidence that resource competition is an important driver of infection, exacerbating effects of density-dependent increases in exposure.
Morphodynamic descriptions of fluid deformable surfaces are relevant for a range of biological and soft matter phenomena, spanning materials that can be passive or active, as well as ordered or topological. However, a principled, geometric formulation of the correct hydrodynamic equations has remained opaque, with objective rates proving a central, contentious issue. We argue that this is due to a conflation of several important notions that must be disambiguated when describing fluid deformable surfaces. These are the Eulerian and Lagrangian perspectives on fluid motion, and three different types of gauge freedom: in the ambient space; in the parameterisation of the surface; and in the choice of frame field on the surface. We clarify these ideas, and show that objective rates in fluid deformable surfaces are time derivatives that are invariant under the first of these gauge freedoms, and which also preserve the structure of the ambient metric. The latter condition reduces a potentially infinite number of possible objective rates to only two: the material derivative and the Jaumann rate. The material derivative is invariant under the Galilean group, and therefore applies to velocities, whose rate captures the conservation of momentum. The Jaumann derivative is invariant under all time-dependent isometries, and therefore applies to local order parameters, or symmetry-broken variables, such as the nematic $Q$-tensor. We provide examples of material and Jaumann rates in two different frame fields that are pertinent to the current applications of the fluid mechanics of deformable surfaces.
Predation can have cascading, regulatory effects across ecological communities. Knowledge of the diet of predators can therefore provide important information regarding their ecology and conservation, as well as their impacts on prey populations. Using scats collected during 2019–2023 and estimates of prey abundance from aerial surveys, we characterized prey consumption and preferences of the Vulnerable African lion Panthera leo population in Tsavo, Kenya. Biomass models applied to prey frequencies in scats revealed that > 85% of lion diet comprised large ungulates weighing > 150 kg. The Critically Endangered hirola Beatragus hunteri and Endangered Grevy's zebra Equus grevyi (species that were introduced in Tsavo as part of ex situ conservation programmes in the 1960s) were amongst the seven prey species, of 16 detected, that were preferred by lions. Our results potentially indicate a disproportionate impact of lion predation on the small hirola and Grevy's zebra populations. Preferential predation, coupled with high availability of alternative prey, may trap the small populations of hirola and Grevy's zebra within a predator pit. Our findings provide a better understanding of lion diet, optimal foraging and the potential effects predators can have on threatened and rare prey species in an important conservation landscape. Based on our findings, we recommend an observational study of the predation ecology of lions and other predators in this system, to provide information on age- and sex-specific predation rates on hirola and Grevy's zebra for a population viability analysis, to support the management of these two threatened and rare herbivores in Tsavo.
Children in middle childhood, from about ages 6 to 12, are developing increased competencies that affect the ways in which they interact with others. Additionally, their contexts change, as they typically begin formal schooling and are exposed to different opportunities, challenges, and individuals with whom they interact. Considering these changes, it is important to consider both how these impact children’s prosocial development and how their prosocial behaviors support their development. In this chapter, we review the development of prosociality in middle childhood, highlighting key issues and central research findings, centering on the developmental tasks that are key to this age period. We also discuss issues and considerations in assessing prosocial development in middle childhood. Finally, we consider the implications for promoting a more just society through the promotion of prosociality and highlight future considerations for research.
Morphodynamic equations governing the behaviour of active nematic fluids on deformable curved surfaces are constructed in the large deformation limit. Emphasis is placed on the formulation of objective rates that account for normal deformations whilst ensuring that tangential flows are Eulerian, and the use of the surface derivative (rather than the covariant derivative) in the nematic free energy, which elastically couples local order to out-of-plane bending of the surface. Focusing on surface geometry and its dynamical interplay with the hydrodynamics, several illustrative instabilities are then characterised. These include cases where the role of the Scriven–Love number and its nematic analogue are non-negligible, and where the active nematic forcing can be characterised by an analogue of the Föppl–von Kármán number. For the former, flows and changes to the nematic texture are coupled to surface geometry by viscous dissipation. This is shown to result in non-trivial relaxation dynamics for a nematic tube. For the latter, the nematic active forcing couples to the surface bending terms of the nematic free energy, resulting in extensile (active ruffling) and contractile (active pearling) instabilities in the tube shape, as well as active bend instabilities in the nematic texture. In comparison to the flat case, such bend instabilities now have a threshold set by the extrinsic curvature of the tube. Finally, we examine a topological defect located on an almost flat surface, and show that there exists a steady state where a combination of defect elasticity, activity and non-negligible spin connection drive a shape change in the surface.
Quantitative plant biology is an interdisciplinary field that builds on a long history of biomathematics and biophysics. Today, thanks to high spatiotemporal resolution tools and computational modelling, it sets a new standard in plant science. Acquired data, whether molecular, geometric or mechanical, are quantified, statistically assessed and integrated at multiple scales and across fields. They feed testable predictions that, in turn, guide further experimental tests. Quantitative features such as variability, noise, robustness, delays or feedback loops are included to account for the inner dynamics of plants and their interactions with the environment. Here, we present the main features of this ongoing revolution, through new questions around signalling networks, tissue topology, shape plasticity, biomechanics, bioenergetics, ecology and engineering. In the end, quantitative plant biology allows us to question and better understand our interactions with plants. In turn, this field opens the door to transdisciplinary projects with the society, notably through citizen science.
Quantitative approaches in plant biology have a long history that have led to several ground-breaking discoveries and given rise to new principles, new paradigms and new methodologies. We take a short historical trip into the past to explore some of the many great scientists and influences that have led to the development of quantitative plant biology. We have not been constrained by historical fact, although we have tried not to deviate too much. We end with a forward look, expressing our hopes and ambitions for this exciting interdisciplinary field.
Comparative transcriptomics can be used to translate an understanding of gene regulatory networks from model systems to less studied species. Here, we use RNA-Seq to determine and compare gene expression dynamics through the floral transition in the model species Arabidopsis thaliana and the closely related crop Brassica rapa. We find that different curve registration functions are required for different genes, indicating that there is no single common ‘developmental time’ between Arabidopsis and B. rapa. A detailed comparison between Arabidopsis and B. rapa and between two B. rapa accessions reveals different modes of regulation of the key floral integrator SOC1, and that the floral transition in the B. rapa accessions is triggered by different pathways. Our study adds to the mechanistic understanding of the regulatory network of flowering time in rapid cycling B. rapa and highlights the importance of registration methods for the comparison of developmental gene expression data.
Electroconvulsive therapy (ECT) is recommended in treatment guidelines as an efficacious therapy for treatment-resistant depression. However, it has been associated with loss of autobiographical memory and short-term reduction in new learning.
Aims
To provide clinically useful guidelines to aid clinicians in informing patients regarding the cognitive side-effects of ECT and in monitoring these during a course of ECT, using complex data.
Method
A Committee of clinical and academic experts from Australia and New Zealand met to the discuss the key issues pertaining to ECT and cognitive side-effects. Evidence regarding cognitive side-effects was reviewed, as was the limited evidence regarding how to monitor them. Both issues were supplemented by the clinical experience of the authors.
Results
Meta-analyses suggest that new learning is impaired immediately following ECT but that group mean scores return at least to baseline by 14 days after ECT. Other cognitive functions are generally unaffected. However, the finding of a mean score that is not reduced from baseline cannot be taken to indicate that impairment, particularly of new learning, cannot occur in individuals, particularly those who are at greater risk. Therefore, monitoring is still important. Evidence suggests that ECT does cause deficits in autobiographical memory. The evidence for schedules of testing to monitor cognitive side-effects is currently limited. We therefore make practical recommendations based on clinical experience.
Conclusions
Despite modern ECT techniques, cognitive side-effects remain an important issue, although their nature and degree remains to be clarified fully. In these circumstances it is useful for clinicians to have guidance regarding what to tell patients and how to monitor these side-effects clinically.
Mössbauer instruments were included on the Mars Exploration Rover (MER) Mission to determine the mineralogic composition, diversity, and oxidation state of Fe-bearing igneous materials and alteration products. A total of 16 Fe-bearing phases (consistent with bulk-sample chemistry) were identified, including Fe associated with rock-forming minerals (olivine, pyroxene, magnetite, ilmenite, and chromite), Fe3+-bearing oxyhydroxides (nanophase ferric oxide, hematite, and goethite), sulfates (jarosite and an unassigned Fe3+ sulfate phase), and Fe2+ carbonate. Igneous rock types ranged from basalts to ultramafic rocks at Gusev crater. Jarosite-hematite bedrock was pervasive at Meridiani Planum, and concretions winnowed from the outcrop were mineralogically hematite. Because their structures contain hydroxyl, goethite, and jarosite provide mineralogic evidence for aqueous processes on Mars, and jarosite and Fe3+ sulfate are evidence for acid-sulfate processes at both Gusev crater and Meridiani Planum. A population of rocks on the Meridiani Planum outcrop was identified as iron and stony meteorites by the presence of Fe metal (kamacite) and the sulfide troilite. The MER mission demonstrates that Mössbauer spectrometers landed on any Fe-bearing planetary surface provide first-order information on igneous provinces, alteration state, and alteration style and provide well-constrained criteria for sample selection on planetary sample-return missions including planets, moons, and asteroids.
Apolipoprotein E (APOE) E4 is the main genetic risk factor for Alzheimer’s disease (AD). Due to the consistent association, there is interest as to whether E4 influences the risk of other neurodegenerative diseases. Further, there is a constant search for other genetic biomarkers contributing to these phenotypes, such as microtubule-associated protein tau (MAPT) haplotypes. Here, participants from the Ontario Neurodegenerative Disease Research Initiative were genotyped to investigate whether the APOE E4 allele or MAPT H1 haplotype are associated with five neurodegenerative diseases: (1) AD and mild cognitive impairment (MCI), (2) amyotrophic lateral sclerosis, (3) frontotemporal dementia (FTD), (4) Parkinson’s disease, and (5) vascular cognitive impairment.
Methods:
Genotypes were defined for their respective APOE allele and MAPT haplotype calls for each participant, and logistic regression analyses were performed to identify the associations with the presentations of neurodegenerative diseases.
Results:
Our work confirmed the association of the E4 allele with a dose-dependent increased presentation of AD, and an association between the E4 allele alone and MCI; however, the other four diseases were not associated with E4. Further, the APOE E2 allele was associated with decreased presentation of both AD and MCI. No associations were identified between MAPT haplotype and the neurodegenerative disease cohorts; but following subtyping of the FTD cohort, the H1 haplotype was significantly associated with progressive supranuclear palsy.
Conclusion:
This is the first study to concurrently analyze the association of APOE isoforms and MAPT haplotypes with five neurodegenerative diseases using consistent enrollment criteria and broad phenotypic analysis.
Background: Observational studies have reported an association between childhood obesity and a higher risk of multiple sclerosis (MS). However, the difficulties to fully account for confounding and long recall periods make causal inference from these studies challenging. The objective of this study was to assess the contribution of childhood obesity to the development of MS through Mendelian randomization, which uses genetic associations to minimize the risk of confounding. Methods: We selected 23 independent genetic variants strongly associated with childhood body mass index (BMI) in a genome-wide association study (GWAS) which included 47,541 children. The corresponding effects of these variants on risk of MS were obtained from a GWAS of 14,802 MS cases and 26,703 controls. Standard two-sample Mendelian randomization methods were performed, with additional sensitivity analyses to assess the likelihood of bias from genetic pleiotropy. Results: The inverse-variance weighted MR analysis revealed that one standard deviation increase in childhood BMI increased odds of MS by 26% (odds ratio=1.26, 95% confidence interval 1.10-1.45, p=0.001). There was no significant heterogeneity across the individual estimates. Sensitivity analyses were consistent with the main findings and provided no evidence of pleiotropy. Conclusions: This study provides genetic support of a role for increased childhood BMI in the development of MS.
Renal disease has a high incidence in cats, and some evidence implicates dietary P as well. To investigate this further, two studies in healthy adult cats were conducted. Study 1 (36 weeks) included forty-eight cats, stratified to control or test diets providing 1·2 or 4·8 g/1000 kcal (4184 kJ) P (0 or approximately 3·6 g/1000 kcal (4184 kJ) inorganic P, Ca:P 1·2, 0·6). Study 2 (29 weeks) included fifty cats, stratified to control or test diets, providing 1·3 or 3·6 g/1000 kcal (4184 kJ) P (0 or approximately 1·5 g/1000 kcal (4184 kJ) inorganic P, Ca:P 1·2, 0·9). Health markers, glomerular filtration rate (GFR) and mineral balance were measured regularly, with abdominal ultrasound. Study 1 was halted after 4 weeks as the test group GFR reduced by 0·4 (95 % CI 0·3, 0·5) ml/min per kg, and ultrasound revealed changes in renal echogenicity. In study 2, at week 28, no change in mean GFR was observed (P >0·05); however, altered renal echogenicity was detected in 36 % of test cats. In agreement with previous studies, feeding a diet with Ca:P <1·0, a high total and inorganic P inclusion resulted in loss of renal function and changes in echogenicity suggestive of renal pathology. Feeding a diet containing lower total and inorganic P with Ca:P close to 1·0 led to more subtle structural changes in a third of test cats; however, nephrolithiasis occurred in both diet groups, complicating data interpretation. We conclude that the no observed adverse effects level for total dietary P in adult cats is lower than 3·6 g/1000 kcal (4184 kJ), however the effect of inorganic P sources and Ca:P require further investigation.
OBJECTIVES/SPECIFIC AIMS: The serotonin receptor 6 (5-HT6) is a potential therapeutic target given its distribution in brain regions that are important in depression, anxiety, and cognition. This study sought to investigate the effects of age on 5-HT6 receptor availability using 11C GSK215083, a PET ligand with affinity for 5-HT6 in the striatum and 5-HT2A in the cortex. METHODS/STUDY POPULATION: In total, 28 healthy male subjects (age range: 23–52 years) were scanned with 11C-GSK215083 on the HR+PET scanner. Time-activity curves in regions-of-interest were fitted with multilinear analysis-1 method. Binding potentials (BPND) were calculated using cerebellum as the reference region and corrected for partial volume effects. RESULTS/ANTICIPATED RESULTS: In 5-HT6 rich areas, regional 11C-GSK215083 displayed a negative correlation between BPND and age in the caudate (r=−0.41, p=0.03) (14% change per decade), and putamen (r=−0.30, p=0.04) (11% change per decade), but not in the ventral striatum and pallidum. Negative correlation with age was also seen in cortical regions (r=−0.41, p=0.03) (7% change per decade), consistent with the literature on 5-HT2A availability. DISCUSSION/SIGNIFICANCE OF IMPACT: This is the first in vivo study in humans to examine the effect of age on 5-HT6 receptor availability. The study demonstrated a significant age-related decline in 5-HT6 availability (BPND) in the caudate and putamen.
Identifying characteristics of individuals at greatest risk for prolonged grief disorder (PGD) can improve its detection and elucidate the etiology of the disorder. The Safe Passage Study, a study of women at high risk for sudden infant death syndrome (SIDS), prospectively examined the psychosocial functioning of women while monitoring their healthy pregnancies. Mothers whose infants died of SIDS were followed in bereavement.
Methods
Pre-loss data were collected from 12 000 pregnant mothers and analyzed for their associations with grief symptoms and PGD in 50 mothers whose infants died from SIDS, from 2 to 48 months after their infant's death, focusing on pre-loss risk factors of anxiety, depression, alcohol use, maternal age, the presence of other living children in the home, and previous child loss.
Results
The presence of any four risk factors significantly predicted PGD for 24 months post-loss (p < 0.003); 2–3 risk factors predicted PGD for 12 months (p = 0.02). PGD rates increased in the second post-loss year, converging in all groups to approximately 40% by 3 years. Pre-loss depressive symptoms were significantly associated with PGD. Higher alcohol intake and older maternal age were consistently positively associated with PGD. Predicted risk scores showed good discrimination between PGD and no PGD 6–24 months after loss (C-statistic = 0.83).
Conclusions
A combination of personal risk factors predicted PGD in 2 years of bereavement. There is a convergence of risk groups to high rates at 2–3 years, marked by increased PGD rates in mothers at low risk. The risk factors showed different effects on PGD.
Obesity is a major challenge for people with schizophrenia.
Aims
We assessed whether STEPWISE, a theory-based, group structured lifestyle education programme could support weight reduction in people with schizophrenia.
Method
In this randomised controlled trial (study registration: ISRCTN19447796), we recruited adults with schizophrenia, schizoaffective disorder or first-episode psychosis from ten mental health organisations in England. Participants were randomly allocated to the STEPWISE intervention or treatment as usual. The 12-month intervention comprised four 2.5 h weekly group sessions, followed by 2-weekly maintenance contact and group sessions at 4, 7 and 10 months. The primary outcome was weight change after 12 months. Key secondary outcomes included diet, physical activity, biomedical measures and patient-related outcome measures. Cost-effectiveness was assessed and a mixed-methods process evaluation was included.
Results
Between 10 March 2015 and 31 March 2016, we recruited 414 people (intervention 208, usual care 206) with 341 (84.4%) participants completing the trial. At 12 months, weight reduction did not differ between groups (mean difference 0.0 kg, 95% CI −1.6 to 1.7, P = 0.963); physical activity, dietary intake and biochemical measures were unchanged. STEPWISE was well-received by participants and facilitators. The healthcare perspective incremental cost-effectiveness ratio was £246 921 per quality-adjusted life-year gained.
Conclusions
Participants were successfully recruited and retained, indicating a strong interest in weight interventions; however, the STEPWISE intervention was neither clinically nor cost-effective. Further research is needed to determine how to manage overweight and obesity in people with schizophrenia.
Declaration of interest
R.I.G.H. received fees for lecturing, consultancy work and attendance at conferences from the following: Boehringer Ingelheim, Eli Lilly, Janssen, Lundbeck, Novo Nordisk, Novartis, Otsuka, Sanofi, Sunovion, Takeda, MSD. M.J.D. reports personal fees from Novo Nordisk, Sanofi-Aventis, Lilly, Merck Sharp & Dohme, Boehringer Ingelheim, AstraZeneca, Janssen, Servier, Mitsubishi Tanabe Pharma Corporation, Takeda Pharmaceuticals International Inc.; and, grants from Novo Nordisk, Sanofi-Aventis, Lilly, Boehringer Ingelheim, Janssen. K.K. has received fees for consultancy and speaker for Novartis, Novo Nordisk, Sanofi-Aventis, Lilly, Servier and Merck Sharp & Dohme. He has received grants in support of investigator and investigator-initiated trials from Novartis, Novo Nordisk, Sanofi-Aventis, Lilly, Pfizer, Boehringer Ingelheim and Merck Sharp & Dohme. K.K. has received funds for research, honoraria for speaking at meetings and has served on advisory boards for Lilly, Sanofi-Aventis, Merck Sharp & Dohme and Novo Nordisk. D.Sh. is expert advisor to the NICE Centre for guidelines; board member of the National Collaborating Centre for Mental Health (NCCMH); clinical advisor (paid consultancy basis) to National Clinical Audit of Psychosis (NCAP); views are personal and not those of NICE, NCCMH or NCAP. J.P. received personal fees for involvement in the study from a National Institute for Health Research (NIHR) grant. M.E.C. and Y.D. report grants from NIHR Health Technology Assessment, during the conduct of the study; and The Leicester Diabetes Centre, an organisation (employer) jointly hosted by an NHS Hospital Trust and the University of Leicester and who is holder (through the University of Leicester) of the copyright of the STEPWISE programme and of the DESMOND suite of programmes, training and intervention fidelity framework that were used in this study. S.R. has received honorarium from Lundbeck for lecturing. F.G. reports personal fees from Otsuka and Lundbeck, personal fees and non-financial support from Sunovion, outside the submitted work; and has a family member with professional links to Lilly and GSK, including shares. F.G. is in part funded by the National Institute for Health Research Collaboration for Leadership in Applied Health Research & Care Funding scheme, by the Maudsley Charity and by the Stanley Medical Research Institute and is supported by the by the Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London.
The carbon-rich AGB star V Hya is believed to be in the very brief transition phase between the AGB and a planetary nebula (PN). Using HST/STIS, we previously found a high-velocity (> 200 kms−1) jet or blob of gas ejected only a few years ago from near (< 0.3 arcsec or 150 AU) the star (Sahai et al. 2003, Sahai et al. 2016). From multi-epoch high-resolution spectroscopy we found time-variable high-velocity absorption features in the CO 4.6 μm vibration-rotation lines of V Hya (Sahai et al. 2009). Modeling shows that these are produced in compact clumps of outflowing gas with significant radial temperature gradients consistent with strong shocks. Here, we present very high resolution (∼100 milliarcsecond) imaging of the central region of V Hya using the coronagraphic mode of the Gemini Planet Imager (GPI) in the 1 μm band and spectral-spatial imaging of 4.6 μm CO 1-0 transitions using the Phoenix spectrometer. We report the detection of a compact central dust disk from GPI, and molecular emission from the Phoenix observations at relatively larger scales. We discuss models for the central structures in V Hya, in particular disks and outflows, using these and complementary images in the optical and radio.