We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Paediatric patients with heart failure requiring ventricular assist devices are at heightened risk of neurologic injury and psychosocial adjustment challenges, resulting in a need for neurodevelopmental and psychosocial support following device placement. Through a descriptive survey developed in collaboration by the Advanced Cardiac Therapies Improving Outcomes Network and the Cardiac Neurodevelopmental Outcome Collaborative, the present study aimed to characterise current neurodevelopmental and psychosocial care practices for paediatric patients with ventricular assist devices.
Method:
Members of both learning networks developed a 25-item electronic survey assessing neurodevelopmental and psychosocial care practices specific to paediatric ventricular assist device patients. The survey was sent to Advanced Cardiac Therapies Improving Outcomes Network site primary investigators and co-primary investigators via email.
Results:
Of the 63 eligible sites contacted, responses were received from 24 unique North and South American cardiology centres. Access to neurodevelopmental providers, referral practices, and family neurodevelopmental education varied across sites. Inpatient neurodevelopmental care consults were available at many centres, as were inpatient family support services. Over half of heart centres had outpatient neurodevelopmental testing and individual psychotherapy services available to patients with ventricular assist devices, though few centres had outpatient group psychotherapy (12.5%) or parent support groups (16.7%) available. Barriers to inpatient and outpatient neurodevelopmental care included limited access to neurodevelopmental providers and parent/provider focus on the child’s medical status.
Conclusions:
Paediatric patients with ventricular assist devices often have access to neurodevelopmental providers in the inpatient setting, though supports vary by centre. Strengthening family neurodevelopmental education, referral processes, and family-centred psychosocial services may improve current neurodevelopmental/psychosocial care for paediatric ventricular assist device patients.
Childhood obesity represents a significant global health concern and identifying its risk factors is crucial for developing intervention programs. Many “omics” factors associated with the risk of developing obesity have been identified, including genomic, microbiomic, and epigenomic factors. Here, using a sample of 48 infants, we investigated how the methylation profiles in cord blood and placenta at birth were associated with weight outcomes (specifically, conditional weight gain, body mass index, and weight-for-length ratio) at age six months. We characterized genome-wide DNA methylation profiles using the Illumina Infinium MethylationEpic chip, and incorporated information on child and maternal health, and various environmental factors into the analysis. We used regression analysis to identify genes with methylation profiles most predictive of infant weight outcomes, finding a total of 23 relevant genes in cord blood and 10 in placenta. Notably, in cord blood, the methylation profiles of three genes (PLIN4, UBE2F, and PPP1R16B) were associated with all three weight outcomes, which are also associated with weight outcomes in an independent cohort suggesting a strong relationship with weight trajectories in the first six months after birth. Additionally, we developed a Methylation Risk Score (MRS) that could be used to identify children most at risk for developing childhood obesity. While many of the genes identified by our analysis have been associated with weight-related traits (e.g., glucose metabolism, BMI, or hip-to-waist ratio) in previous genome-wide association and variant studies, our analysis implicated several others, whose involvement in the obesity phenotype should be evaluated in future functional investigations.
The U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed–crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America’s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency’s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being.
Studies have reported mixed findings regarding the impact of the coronavirus disease 2019 (COVID-19) pandemic on pregnant women and birth outcomes. This study used a quasi-experimental design to account for potential confounding by sociodemographic characteristics.
Methods
Data were drawn from 16 prenatal cohorts participating in the Environmental influences on Child Health Outcomes (ECHO) program. Women exposed to the pandemic (delivered between 12 March 2020 and 30 May 2021) (n = 501) were propensity-score matched on maternal age, race and ethnicity, and child assigned sex at birth with 501 women who delivered before 11 March 2020. Participants reported on perceived stress, depressive symptoms, sedentary behavior, and emotional support during pregnancy. Infant gestational age (GA) at birth and birthweight were gathered from medical record abstraction or maternal report.
Results
After adjusting for propensity matching and covariates (maternal education, public assistance, employment status, prepregnancy body mass index), results showed a small effect of pandemic exposure on shorter GA at birth, but no effect on birthweight adjusted for GA. Women who were pregnant during the pandemic reported higher levels of prenatal stress and depressive symptoms, but neither mediated the association between pandemic exposure and GA. Sedentary behavior and emotional support were each associated with prenatal stress and depressive symptoms in opposite directions, but no moderation effects were revealed.
Conclusions
There was no strong evidence for an association between pandemic exposure and adverse birth outcomes. Furthermore, results highlight the importance of reducing maternal sedentary behavior and encouraging emotional support for optimizing maternal health regardless of pandemic conditions.
Understanding place-based contributors to health requires geographically and culturally diverse study populations, but sharing location data is a significant challenge to multisite studies. Here, we describe a standardized and reproducible method to perform geospatial analyses for multisite studies. Using census tract-level information, we created software for geocoding and geospatial data linkage that was distributed to a consortium of birth cohorts located throughout the USA. Individual sites performed geospatial linkages and returned tract-level information for 8810 children to a central site for analyses. Our generalizable approach demonstrates the feasibility of geospatial analyses across study sites to promote collaborative translational research.
Many factors such as environment, herbicide rate, growth stage at application, and days between sequential applications can influence the response of a crop to herbicides. Florpyrauxifen-benzyl is a new broad-spectrum, POST herbicide that was commercialized for use in U.S. rice production in 2018. Field experiments were conducted in 2018 at the Pine Tree Research Station (PTRS) near Colt, AR, and the Rice Research and Extension Center (RREC), near Stuttgart, AR, to evaluate crop injury and yield response of three rice cultivars to sequential applications of florpyrauxifen-benzyl. Greenhouse and growth chamber experiments were conducted at the Altheimer Laboratory in Fayetteville, AR, to evaluate cultivar responses when florpyrauxifen-benzyl was applied at 30 or 60 g ae ha−1 to rice exposed to different temperature regimes or at various growth stages. Three rice cultivars were used in all experiments: long-grain variety ‘CL111’, medium-grain variety ‘CL272’, and long-grain hybrid cultivar ‘CLXL745’. CL111 exhibited sufficient tolerance to florpyrauxifen-benzyl with only 10% visible injury and no effect on yield. CL272 showed 15% injury 3 wk after the second application in the field experiment when applications were made 14 d apart. Additionally, 12% injury was observed in greenhouse studies when florpyrauxifen-benzyl was applied at 30 g ae ha−1, averaged over various growth stages at application. Florpyrauxifen-benzyl did not reduce the yield of CL272 in field experiments, indicating that CL272 can recover from florpyrauxifen-benzyl injury. As much as 64% injury was observed for CLXL745 at 3 wk after application (WAA) when sequential herbicide applications were made 4 d apart. High levels of injury occurred in the growth chamber and greenhouse studies for this cultivar as well. Sequential applications of florpyrauxifen-benzyl reduced yields of CLXL745 in nearly all treatments. Data from these experiments suggest that CL272 and CLXL745 are sensitive to sequential applications of florpyrauxifen-benzyl. Growers must follow the prescribed guidelines for using florpyrauxifen-benzyl in these cultivars and others like it.
To determine the scope, source, and mode of transmission of a multifacility outbreak of extensively drug-resistant (XDR) Acinetobacter baumannii.
DESIGN
Outbreak investigation.
SETTING AND PARTICIPANTS
Residents and patients in skilled nursing facilities, long-term acute-care hospital, and acute-care hospitals.
METHODS
A case was defined as the incident isolate from clinical or surveillance cultures of XDR Acinetobacter baumannii resistant to imipenem or meropenem and nonsusceptible to all but 1 or 2 antibiotic classes in a patient in an Oregon healthcare facility during January 2012–December 2014. We queried clinical laboratories, reviewed medical records, oversaw patient and environmental surveillance surveys at 2 facilities, and recommended interventions. Pulsed-field gel electrophoresis (PFGE) and molecular analysis were performed.
RESULTS
We identified 21 cases, highly related by PFGE or healthcare facility exposure. Overall, 17 patients (81%) were admitted to either long-term acute-care hospital A (n=8), or skilled nursing facility A (n=8), or both (n=1) prior to XDR A. baumannii isolation. Interfacility communication of patient or resident XDR status was not performed during transfer between facilities. The rare plasmid-encoded carbapenemase gene blaOXA-237 was present in 16 outbreak isolates. Contact precautions, chlorhexidine baths, enhanced environmental cleaning, and interfacility communication were implemented for cases to halt transmission.
CONCLUSIONS
Interfacility transmission of XDR A. baumannii carrying the rare blaOXA-237 was facilitated by transfer of affected patients without communication to receiving facilities.
The surface and bottom topography of the central Greenland ice sheet was determined from airborne ice-radar soundings over a 180 km by 180 km grid centered on the 1974 “Summit” site (lat. 72°18′N., long. 37°55′W.), using the Technical University of Denmark 60 MHz ice radar. Over 6100 km of high-quality radar data were obtained, covering over 99'% of the grid, along lines spaced 12.5 km apart in both north-south and east-west directions. Aircraft location was done with an inertial navigation system (INS) and a pressure altimeter, with control provided by periodically flying over a known point at the center of the grid. The ice radar was used to determine ice thickness; the surface topography was determined independently using height-above-terrain measurements from the aircraft’s radar altimeter. The calculated surface topography is accurate to about ±6 m, with this error arising mostly from radar-altimeter errors. The ice thickness and bottom topography are accurate to about ±50 m, with this error dominated by the horizontal navigation uncertainties due to INS drift; this error increases to about ±125 m in areas of rough bottom relief (about 12% of the grid).
The highest point on Greenland is at lat. 72°34′ N., long. 37°38′W., at an altitude of 3233 ± 6 m a.s.l. The ice surface at this point divides into three sectors, one facing north, one east-south-east, and one west-south-west, with each having a roughly uniform slope. The ice divide between the last two sectors is a well-defined ridge running almost due south. The ice is about 3025 m thick at the summit. Excluding the mountainous north-east corner of the grid, where the ice locally reaches a thickness of about 3470 m and the bed dips to about 370 m below sea-level, the maximum ice thickness, approximately 3375 m, occurs about 97 km south-south-west of the summit. The average bed altitude over the entire grid is 180 m and the average ice thickness is 2975 ± 235 m. The ice in most of the south-west quadrant of the grid is over 3200 m thick, and overlies a relatively smooth, flat basin with altitudes mostly below sea-level. There is no predominant direction to the basal topography over most of the grid; it appears to be undulating, rolling terrain with no obvious ridge/valley structure. The summit of the ice sheet is above the eastern end of a relatively large, smooth, flat plateau, about 10–15 km wide and extending about 50 km to the west. If the basal topography were the sole criterion, then a site somewhere on this plateau or in the south-west basin would be suitable for the drilling of a new deep ice core.
A new short-pulse digital profiling radar system that operates at lower frequencies than most ice radars used in polar regions to date has been designed and built by the U.S. Geological Survey. The transmitter is an avalanche transistor pulser which drives a resistively loaded dipole transmitting antenna. A similar, but separate antenna is connected to the receiver. The receiver has adjustable sensitivity time control (STC) of as much as 60 dB to compensate for attenuation and geometric spreading factors. A fiber-optic cable is used to transmit both control signals and data. The data-acquisition and display system incorporates very high-speed digitizing and signal averaging, real-time profile display, and data storage on standard computer nine-track magnetic tape.
The system was successfully used on Ice Stream B in West Antarctica at centre frequencies of 1, 2, 4, 8, and 12.5 MHz. Bottom-return signal-to-noise ratios of more than 40 dB were obtained at 2 MHz through 800 m of ice. Convoluted internal surfaces not related to present bottom topography were resolved within the ice streams and anomalous strong reflections or “bright spots” were identified near the base of the ice. At present, there is no satisfactory glaciological explanation for either of these observations.
The anticipated release of EnlistTM cotton, corn, and soybean cultivars likely will increase the use of 2,4-D, raising concerns over potential injury to susceptible cotton. An experiment was conducted at 12 locations over 2013 and 2014 to determine the impact of 2,4-D at rates simulating drift (2 g ae ha−1) and tank contamination (40 g ae ha−1) on cotton during six different growth stages. Growth stages at application included four leaf (4-lf), nine leaf (9-lf), first bloom (FB), FB + 2 wk, FB + 4 wk, and FB + 6 wk. Locations were grouped according to percent yield loss compared to the nontreated check (NTC), with group I having the least yield loss and group III having the most. Epinasty from 2,4-D was more pronounced with applications during vegetative growth stages. Importantly, yield loss did not correlate with visual symptomology, but more closely followed effects on boll number. The contamination rate at 9-lf, FB, or FB + 2 wk had the greatest effect across locations, reducing the number of bolls per plant when compared to the NTC, with no effect when applied at FB + 4 wk or later. A reduction of boll number was not detectable with the drift rate except in group III when applied at the FB stage. Yield was influenced by 2,4-D rate and stage of cotton growth. Over all locations, loss in yield of greater than 20% occurred at 5 of 12 locations when the drift rate was applied between 4-lf and FB + 2 wk (highest impact at FB). For the contamination rate, yield loss was observed at all 12 locations; averaged over these locations yield loss ranged from 7 to 66% across all growth stages. Results suggest the greatest yield impact from 2,4-D occurs between 9-lf and FB + 2 wk, and the level of impact is influenced by 2,4-D rate, crop growth stage, and environmental conditions.
Low-frequency surface-based radar-profiling experiments on Ice Streams Β and C, West Antarctica, have yielded high-resolution images which depict folding of the internal layers that can aid in the interpretation of ice-stream dynamics. Unlike folding seen in most earlier radar studies of ice sheets, the present structures have no relationship to bedrock topography and show tilting of their axial fold planes in the flow direction. Rather than being standing waves created by topography or local variations in basal shear stress, the data show that these folds originate upstream of the region of streaming flow and are advected into the ice streams. The mechanism for producing folds is hypothesized to be changes in the basal boundary conditions as the ice makes the transition from inland ice to ice-stream flow. Migration of this transition zone headward can then cause folds in the internal layering to be propagated down the ice streams.
Many problems in biology involve gels which are mixtures composed of a polymer network permeated by a fluid solvent (water). The two-fluid model is a widely used approach to described gel mechanics, in which both network and solvent coexist at each point of space and their relative abundance is described by their volume fractions. Each phase is modeled as a continuum with its own velocity and constitutive law. In some biological applications, free boundaries separate regions of gel and regions of pure solvent, resulting in a degenerate network momentum equation where the network volume fraction vanishes. To overcome this difficulty, we develop a regularization method to solve the two-phase gel equations when the volume fraction of one phase goes to zero in part of the computational domain. A small and constant network volume fraction is temporarily added throughout the domain in setting up the discrete linear equations and the same set of equation is solved everywhere. These equations are very poorly conditioned for small values of the regularization parameter, but the multigrid-preconditioned GMRES method we use to solve them is efficient and produces an accurate solution of these equations for the full range of relevant regularization parameter values.
The seventh annual Teaching and Learning Conference (TLC) was held in Philadelphia, Pennsylvania, from February 5 to 7, 2010, with 224 attendees onsite. The theme for the meeting was “Advancing Excellence in Teaching Political Science.” Using the working-group model, the TLC track format encourages in-depth discussion and debate on research dealing with the scholarship of teaching and learning.
This study evaluated the influence of cognitive reserve on neuropsychological test performance in 198 patients infected with the hepatitis C virus. IQ scores, educational level, and occupational rating were combined to calculate a Cognitive Reserve Score (CRS) for each patient. Similar to studies of infection with the human immunodeficiency virus, there was a significantly increased risk of impairment in neuropsychological test performance in individuals with lower CRSs. It is important to account for CRS when assessing cognitive findings in large-scale clinical trials. (JINS, 2007, 13, 687–692.)Financial relationships of the authors with Hoffmann-La Roche, Inc., are as follows: K.L. Lindsay is a consultant and receives research support; A.S.F. Lok is a consultant and receives grant support; and R.J. Fontana is on the speaker's bureau. Authors with no financial relationships related to this project are as follows: L.A. Bieliauskas, C. Back-Madruga, E.C. Wright, and Z. Kronfol.
In developing public policy on food safety, systematic identification and thorough investigation of all general outbreaks is necessary in order to avoid bias towards highly publicised outbreaks. In Wales, from 1986 to 1998, 87 general foodborne outbreaks of salmonellosis were identified. Most outbreaks occurred at functions or were associated with small catering outlets such as bakeries and sandwich bars. In 50 outbreaks, a vehicle of infection was confirmed microbiologically and/or epidemiologically. The most common food vehicles were those containing shell eggs. Salmonella enteritidis outbreaks were significantly more likely than outbreaks of other serotypes to be associated with vehicles containing shell eggs, suggesting that eggs were also the source of infection in many outbreaks. The routine use of analytical epidemiological studies to identify vehicles in outbreaks is recommended.