We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
Recent changes to US research funding are having far-reaching consequences that imperil the integrity of science and the provision of care to vulnerable populations. Resisting these changes, the BJPsych Portfolio reaffirms its commitment to publishing mental science and advancing psychiatric knowledge that improves the mental health of one and all.
Adsorption of cetylpyridinium chloride (CPC) onto kaolinite can be followed using the electroacoustic effect. The dynamic mobility, measured at a frequency of 1 MHz, varies from about −2 to +1 × 10−8 m2 V−1 s−1 in a number of steps, reflecting the adsorption of two separate layers, with the bilayer being more obvious, especially at pH 5–8. The behaviour at different pHs reflects the different charge characteristics of the basal cleavage planes and the crystal edges. When the amount of added CPC is equal to the cation exchange capacity of the clay, the kinetic charge changes from negative to positive and there is a pronounced break in the conductivity curve. It is also possible to estimate the edge to face area from such measurements and so obtain a measure of the aspect ratio of the clay crystallites. The (minimum) value for this clay is about 5:1.
White matter hyperintensity (WMH) burden is greater, has a frontal-temporal distribution, and is associated with proxies of exposure to repetitive head impacts (RHI) in former American football players. These findings suggest that in the context of RHI, WMH might have unique etiologies that extend beyond those of vascular risk factors and normal aging processes. The objective of this study was to evaluate the correlates of WMH in former elite American football players. We examined markers of amyloid, tau, neurodegeneration, inflammation, axonal injury, and vascular health and their relationships to WMH. A group of age-matched asymptomatic men without a history of RHI was included to determine the specificity of the relationships observed in the former football players.
Participants and Methods:
240 male participants aged 45-74 (60 unexposed asymptomatic men, 60 male former college football players, 120 male former professional football players) underwent semi-structured clinical interviews, magnetic resonance imaging (structural T1, T2 FLAIR, and diffusion tensor imaging), and lumbar puncture to collect cerebrospinal fluid (CSF) biomarkers as part of the DIAGNOSE CTE Research Project. Total WMH lesion volumes (TLV) were estimated using the Lesion Prediction Algorithm from the Lesion Segmentation Toolbox. Structural equation modeling, using Full-Information Maximum Likelihood (FIML) to account for missing values, examined the associations between log-TLV and the following variables: total cortical thickness, whole-brain average fractional anisotropy (FA), CSF amyloid ß42, CSF p-tau181, CSF sTREM2 (a marker of microglial activation), CSF neurofilament light (NfL), and the modified Framingham stroke risk profile (rFSRP). Covariates included age, race, education, APOE z4 carrier status, and evaluation site. Bootstrapped 95% confidence intervals assessed statistical significance. Models were performed separately for football players (college and professional players pooled; n=180) and the unexposed men (n=60). Due to differences in sample size, estimates were compared and were considered different if the percent change in the estimates exceeded 10%.
Results:
In the former football players (mean age=57.2, 34% Black, 29% APOE e4 carrier), reduced cortical thickness (B=-0.25, 95% CI [0.45, -0.08]), lower average FA (B=-0.27, 95% CI [-0.41, -.12]), higher p-tau181 (B=0.17, 95% CI [0.02, 0.43]), and higher rFSRP score (B=0.27, 95% CI [0.08, 0.42]) were associated with greater log-TLV. Compared to the unexposed men, substantial differences in estimates were observed for rFSRP (Bcontrol=0.02, Bfootball=0.27, 994% difference), average FA (Bcontrol=-0.03, Bfootball=-0.27, 802% difference), and p-tau181 (Bcontrol=-0.31, Bfootball=0.17, -155% difference). In the former football players, rFSRP showed a stronger positive association and average FA showed a stronger negative association with WMH compared to unexposed men. The effect of WMH on cortical thickness was similar between the two groups (Bcontrol=-0.27, Bfootball=-0.25, 7% difference).
Conclusions:
These results suggest that the risk factor and biological correlates of WMH differ between former American football players and asymptomatic individuals unexposed to RHI. In addition to vascular risk factors, white matter integrity on DTI showed a stronger relationship with WMH burden in the former football players. FLAIR WMH serves as a promising measure to further investigate the late multifactorial pathologies of RHI.
The Eighth World Congress of Pediatric Cardiology and Cardiac Surgery (WCPCCS) will be held in Washington DC, USA, from Saturday, 26 August, 2023 to Friday, 1 September, 2023, inclusive. The Eighth World Congress of Pediatric Cardiology and Cardiac Surgery will be the largest and most comprehensive scientific meeting dedicated to paediatric and congenital cardiac care ever held. At the time of the writing of this manuscript, The Eighth World Congress of Pediatric Cardiology and Cardiac Surgery has 5,037 registered attendees (and rising) from 117 countries, a truly diverse and international faculty of over 925 individuals from 89 countries, over 2,000 individual abstracts and poster presenters from 101 countries, and a Best Abstract Competition featuring 153 oral abstracts from 34 countries. For information about the Eighth World Congress of Pediatric Cardiology and Cardiac Surgery, please visit the following website: [www.WCPCCS2023.org]. The purpose of this manuscript is to review the activities related to global health and advocacy that will occur at the Eighth World Congress of Pediatric Cardiology and Cardiac Surgery.
Acknowledging the need for urgent change, we wanted to take the opportunity to bring a common voice to the global community and issue the Washington DC WCPCCS Call to Action on Addressing the Global Burden of Pediatric and Congenital Heart Diseases. A copy of this Washington DC WCPCCS Call to Action is provided in the Appendix of this manuscript. This Washington DC WCPCCS Call to Action is an initiative aimed at increasing awareness of the global burden, promoting the development of sustainable care systems, and improving access to high quality and equitable healthcare for children with heart disease as well as adults with congenital heart disease worldwide.
The U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed–crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America’s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency’s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being.
Currently utilized clinician-rated symptom scales for tardive dyskinesia (TD) have not kept up with the expanding spectrum of TD phenomenology. The objective of this study was to develop and test the reliability of a new instrument, the CTI.
Methods
A movement disorder neurologist devised the outline of the scale. A steering committee (four neurologists and two psychiatrists) provided revisions until consensus was reached. The resulting instrument assesses frequency of abnormal movements of the eye/eyelid/face, tongue/mouth, jaw, limb/trunk, complex movements (e.g., handwringing, self-caressing), and vocalizations. The CTI rates symptoms from 0–3 with 0 = absent, 1 = infrequent/intermittent or only present with activating maneuvers, 2 = frequent intermittent, brief periods without movements, 3 = constant or nearly constant. Functional impairments including activities of daily living (ADL), social impairment, symptom bother, and harm are rated 0–3 with 0 = patient is unaware or unaffected, 1 = symptoms mildly impact patient, 2 = symptoms moderately impact patient, 3 = symptoms severely impact patient. Following institutional review board approval, the CTI underwent inter-rater and test-retest reliability testing. Videos of patient TD examinations were obtained and reviewed by two movement disorder specialists to confirm the diagnosis of TD by consensus and the adequacy to demonstrate a TD-consistent movement. Vignettes were created to include patients’ symptom descriptions and functional, social, or occupational impairments/limitations. Four clinicians rated each video/vignette. Selected videos/vignettes were also subject to an intra-rater retest. Interrater agreement was analyzed via 2-way random-effects interclass correlation (ICC) and test-retest agreement assessment utilizing Kendall’s tau-b.
Results
45 video/vignettes were assessed for interrater reliability, and 16 for test-retest reliability. ICCs for movement frequency were as follows: abnormal eye movement .89; abnormal tongue/mouth movement .91; abnormal jaw movement .89; abnormal limb movement .76; complex movement .87; abnormal vocalization .77; and functional impairments including harm .82; social embarrassment .88; ADLs .83; and symptom bother .92. Retests were conducted on mean (SD) 15 (3) days later with scores ranging from .66–.87.
Conclusions
The CTI is a new instrument with good reliability in assessing TD symptoms and functional impacts. Future validation study is warranted.
Clinical trials are a vital component of translational science, providing crucial information on the efficacy and safety of new interventions and forming the basis for regulatory approval and/or clinical adoption. At the same time, they are complex to design, conduct, monitor, and report successfully. Concerns over the last two decades about the quality of the design and the lack of completion and reporting of clinical trials, characterized as a lack of “informativeness,” highlighted by the experience during the COVID-19 pandemic, have led to several initiatives to address the serious shortcomings of the United States clinical research enterprise.
Methods and Results:
Against this background, we detail the policies, procedures, and programs that we have developed in The Rockefeller University Center for Clinical and Translational Science (CCTS), supported by a Clinical and Translational Science Award (CTSA) program grant since 2006, to support the development, conduct, and reporting of informative clinical studies.
Conclusions:
We have focused on building a data-driven infrastructure to both assist individual investigators and bring translational science to each element of the clinical investigation process, with the goal of both generating new knowledge and accelerating the uptake of that knowledge into practice.
The ability to effectively lead an interdisciplinary translational team is a crucial component of team science success. Most KL2 Clinical Scholars have been members of scientific teams, but few have been team science leaders. There is a dearth of literature and outcome measures of effective Team Science Leadership in clinical and translational research. We focused our curriculum to emphasize Team Science Leadership, developed a list of Team Science Leadership competencies for translational investigators using a modified Delphi method, and incorporated the competencies into a quantitative evaluation survey. The survey is completed on entry and annually thereafter by the Scholar; the Scholar’s primary mentor and senior staff who educate and interact with the Scholar rate the Scholar at the end of each year. The program leaders and mentor review the results with each Scholar. The survey scales had high internal consistency and good factor structure. Overall ratings by mentors and senior staff were generally high, but ratings by Scholars tended to be lower, offering opportunities for discussion and career planning. Scholars rated the process favorably. A Team Science Leadership curriculum and periodic survey of attained competencies can inform individual career development and guide team science curriculum development.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
Ecosystem modeling, a pillar of the systems ecology paradigm (SEP), addresses questions such as, how much carbon and nitrogen are cycled within ecological sites, landscapes, or indeed the earth system? Or how are human activities modifying these flows? Modeling, when coupled with field and laboratory studies, represents the essence of the SEP in that they embody accumulated knowledge and generate hypotheses to test understanding of ecosystem processes and behavior. Initially, ecosystem models were primarily used to improve our understanding about how biophysical aspects of ecosystems operate. However, current ecosystem models are widely used to make accurate predictions about how large-scale phenomena such as climate change and management practices impact ecosystem dynamics and assess potential effects of these changes on economic activity and policy making. In sum, ecosystem models embedded in the SEP remain our best mechanism to integrate diverse types of knowledge regarding how the earth system functions and to make quantitative predictions that can be confronted with observations of reality. Modeling efforts discussed are the Century ecosystem model, DayCent ecosystem model, Grassland Ecosystem Model ELM, food web models, Savanna model, agent-based and coupled systems modeling, and Bayesian modeling.
Recently, artificial intelligence-powered devices have been put forward as potentially powerful tools for the improvement of mental healthcare. An important question is how these devices impact the physician-patient interaction.
Aims
Aifred is an artificial intelligence-powered clinical decision support system (CDSS) for the treatment of major depression. Here, we explore the use of a simulation centre environment in evaluating the usability of Aifred, particularly its impact on the physician–patient interaction.
Method
Twenty psychiatry and family medicine attending staff and residents were recruited to complete a 2.5-h study at a clinical interaction simulation centre with standardised patients. Each physician had the option of using the CDSS to inform their treatment choice in three 10-min clinical scenarios with standardised patients portraying mild, moderate and severe episodes of major depression. Feasibility and acceptability data were collected through self-report questionnaires, scenario observations, interviews and standardised patient feedback.
Results
All 20 participants completed the study. Initial results indicate that the tool was acceptable to clinicians and feasible for use during clinical encounters. Clinicians indicated a willingness to use the tool in real clinical practice, a significant degree of trust in the system's predictions to assist with treatment selection, and reported that the tool helped increase patient understanding of and trust in treatment. The simulation environment allowed for the evaluation of the tool's impact on the physician–patient interaction.
Conclusions
The simulation centre allowed for direct observations of clinician use and impact of the tool on the clinician–patient interaction before clinical studies. It may therefore offer a useful and important environment in the early testing of new technological tools. The present results will inform further tool development and clinician training materials.
Prenatal diethylstilbestrol (DES) exposure is associated with increased risk of hormonally mediated cancers and other medical conditions. We evaluated the association between DES and risk of pancreatic cancer and pancreatic disorders, type 2 diabetes, and gallbladder disease, which may be involved with this malignancy. Our analyses used follow-up data from the US National Cancer Institute DES Combined Cohort Study. Cox proportional hazards models estimated hazard ratios (HRs) and 95% confidence intervals (CIs) adjusted for age, sex, cohort, body mass index, smoking, and alcohol for the association between prenatal DES exposure and type 2 diabetes, gallbladder disease (mainly cholelithiasis), pancreatic disorders (mainly pancreatitis), and pancreatic cancer among 5667 exposed and 3315 unexposed individuals followed from 1990 to 2017. Standardized incidence rate (SIR) ratios for pancreatic cancer were based on age-, race-, and calendar year-specific general population cancer incidence rates. In women and men combined, the hazards for total pancreatic disorders and pancreatitis were greater in the prenatally DES exposed than the unexposed (HR = 11, 95% CI 2.6–51 and HR = 7.0, 95% CI 1.5–33, respectively). DES was not associated overall with gallbladder disease (HR = 1.2, 95% CI 0.88–1.5) or diabetes (HR = 1.1, 95% CI 0.9–1.2). In women, but not in men, DES exposure was associated with increased risk of pancreatic cancer compared with the unexposed (HR: 4.1, 95% CI 0.84–20) or general population (SIR: 1.9, 95% CI 1.0–3.2). Prenatal DES exposure may increase the risk of pancreatic disorders, including pancreatitis in women and men. The data suggested elevated pancreatic cancer risk in DES-exposed women, but not in exposed men.
Glyphosate-resistant (GR) canola is a widely grown crop across western Canada and has quickly become a prolific volunteer weed. Glyphosate-resistant soybean is rapidly gaining acreage in western Canada. Thus, there is a need to evaluate herbicide options to manage volunteer GR canola in GR soybean crops. We conducted an experiment to evaluate the efficacy of various PRE and POST herbicides applied sequentially to volunteer GR canola and to evaluate soybean injury caused by these herbicides. Trials were conducted across Saskatchewan and Manitoba in 2014 and 2015. All treatments provided a range of suppression (>70%) to control (>80%) of volunteer canola. All treatments with the exception of the glyphosate-treated control reduced aboveground canola biomass by an average of 96%. As well, canola seed contamination was reduced from 36% to less than 5% when a PRE and POST herbicide were both used. Moreover, all combinations of herbicides used had excellent crop safety (<10%). All PRE and POST herbicide combinations provided better control of volunteer canola compared with the glyphosate-only control, but tribenuron followed by bentazon and tribenuron followed by imazamox plus bentazon provided solutions that were low cost, currently available (registered in western Canada), and had the potential to minimize development of herbicide resistance in other weeds.
In recent years, soybean acreage has increased significantly in western Canada. One of the challenges associated with growing soybean in western Canada is the control of volunteer glyphosate-resistant (GR) canola, because most soybean cultivars are also glyphosate resistant. The objective of this research was to determine the impact of soybean seeding rate and planting date on competition with volunteer canola. We also attempted to determine how high seeding rate could be raised while still being economically feasible for producers. Soybean was seeded at five different seeding rates (targeted 10, 20, 40, 80, and 160 plants m−2) and three planting dates (targeted mid-May, late May, and early June) at four sites across western Canada in 2014 and 2015. Soybean yield consistently increased with higher seeding rates, whereas volunteer canola biomass decreased. Planting date generally produced variable results across site-years. An economic analysis determined that the optimal rate was 40 to 60 plants m−2, depending on market price, and the optimal planting date range was from May 20 to June 1.
OBJECTIVES/SPECIFIC AIMS: Objectives/goals: Describe the process used to develop leveled competencies and associated examples. Discuss the final leveled competencies and their potential use in clinical research professional workforce initiatives. METHODS/STUDY POPULATION: The revised JTFCTC Framework 2.0 has 51 competency statements, representing 8 domains. Each competency statement has now been refined to delineate fundamental, skilled or advanced levels of knowledge and capability. Typically, the fundamental level describes the competency for a professional that requires some coaching and oversight, but is able to understand and identify basic concepts. The skilled level of the competency reflects the professional’s solid understanding of the competency and use of the information to take action independently in most situations. The advanced level embodies high level thinking, problem solving, and the ability to guide others in the competency. The process for developing both the three levels and examples involved 5 workgroups, each chaired by a content expert and comprising of national/international clinical research experts, including representatives from research sites, professional associations, government, and industry and academic sponsors. RESULTS/ANTICIPATED RESULTS: The committee developed 51 specific competencies arrayed across 3 levels and examples of each to demonstrate an appropriate application of the competency. The competencies and examples, and potential utilization, will be described. DISCUSSION/SIGNIFICANCE OF IMPACT: The use of competencies in the context of workforce development and training initiatives is helping to create standards for the clinical research profession. These leveled competencies allow for an important refinement to the standards that can be used to enhance the quality and safety of the clinical research enterprise and guide workforce development.
Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84–88) presented a critique of our recently published paper in Cell Reports entitled ‘Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets’ (Lam et al., Cell Reports, Vol. 21, 2017, 2597–2613). Specifically, Hill offered several interrelated comments suggesting potential problems with our use of a new analytic method called Multi-Trait Analysis of GWAS (MTAG) (Turley et al., Nature Genetics, Vol. 50, 2018, 229–237). In this brief article, we respond to each of these concerns. Using empirical data, we conclude that our MTAG results do not suffer from ‘inflation in the FDR [false discovery rate]’, as suggested by Hill (Twin Research and Human Genetics, Vol. 21, 2018, 84–88), and are not ‘more relevant to the genetic contributions to education than they are to the genetic contributions to intelligence’.
An internationally approved and globally used classification scheme for the diagnosis of CHD has long been sought. The International Paediatric and Congenital Cardiac Code (IPCCC), which was produced and has been maintained by the International Society for Nomenclature of Paediatric and Congenital Heart Disease (the International Nomenclature Society), is used widely, but has spawned many “short list” versions that differ in content depending on the user. Thus, efforts to have a uniform identification of patients with CHD using a single up-to-date and coordinated nomenclature system continue to be thwarted, even if a common nomenclature has been used as a basis for composing various “short lists”. In an attempt to solve this problem, the International Nomenclature Society has linked its efforts with those of the World Health Organization to obtain a globally accepted nomenclature tree for CHD within the 11th iteration of the International Classification of Diseases (ICD-11). The International Nomenclature Society has submitted a hierarchical nomenclature tree for CHD to the World Health Organization that is expected to serve increasingly as the “short list” for all communities interested in coding for congenital cardiology. This article reviews the history of the International Classification of Diseases and of the IPCCC, and outlines the process used in developing the ICD-11 congenital cardiac disease diagnostic list and the definitions for each term on the list. An overview of the content of the congenital heart anomaly section of the Foundation Component of ICD-11, published herein in its entirety, is also included. Future plans for the International Nomenclature Society include linking again with the World Health Organization to tackle procedural nomenclature as it relates to cardiac malformations. By doing so, the Society will continue its role in standardising nomenclature for CHD across the globe, thereby promoting research and better outcomes for fetuses, children, and adults with congenital heart anomalies.
Velvetleaf is difficult to control in corn and soybean and the seed can persist in soil for many years. Seven cultural and tillage practices were established in 1974 on a site heavily infested with velvetleaf to determine the time required to eradicate velvetleaf seed from the soil. A rapid decline in velvetleaf seed population in the top 23 cm of soil occurred during the first 5 yr of this study. In the fifth year, the chemical fallow and continuous alfalfa treatments had 37 and 56% of the original velvetleaf seed population remaining, respectively. In the 17th year, soils in these treatments that had received no tillage since study initiation still contained 15 and 25% of the original velvetleaf seed population, respectively. Systems involving moldboard plowing with continuous-tillage fallow, continuous cropping of corn or oat, or an annual corn and soybean rotation had a more rapid decline in the velvetleaf seed population in soil compared to the chemical fallow and continuous alfalfa treatment. After 17 yr, soil in any system that had received at least one moldboard plowing per year still contained 1 to 3 million velvetleaf seed ha−1, which is only 0.8 to 2.5% of the initial viable seed population. Nearly 100% of the seed remaining in the soil in the 17th year for all treatments was still viable.
An annual weed, found in Minnesota in the summer of 1984, was identified as Polygonum bungeanum Turcz. This species is not included in floras of North America and may have been introduced from Asia as long ago as 25 yr. Because the stems of this weed are prickly, we propose “prickly smartweed” as a common name for this species. Currently, we know the weed to occur in six counties in southern Minnesota and one county in northern Iowa. Field observations suggest that this species may be at least as competitive as other annual smartweeds.