We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
Acceptance and willingness to pay for the COVID-19 vaccine are unknown.
Aims
We compared attitudes toward COVID-19 vaccination in people suffering from depression or anxiety disorder and people without mental disorders, and their willingness to pay for it.
Method
Adults with depression or anxiety disorder (n = 79) and healthy controls (n = 134) living in Chongqing, China, completed a cross-sectional study between 13 and 26 January 2021. We used a validated survey to assess eight aspects related to attitudes toward the COVID-19 vaccines. Psychiatric symptoms were assessed by the 21-item Depression, Anxiety and Stress Scale.
Results
Seventy-six people with depression or anxiety disorder (96.2%) and 134 healthy controls (100%) reported willingness to receive the COVID-19 vaccine. A significantly higher proportion of people with depression or anxiety disorder (64.5%) were more willing to pay for the COVID-19 vaccine than healthy controls (38.1%) (P ≤ 0.001). After multivariate adjustment, severity of depression and anxiety was significantly associated with willingness to pay for COVID-19 vaccination among psychiatric patients (P = 0.048). Non-healthcare workers (P = 0.039), health insurance (P = 0.003), living with children (P = 0.006) and internalised stigma (P = 0.002) were significant factors associated with willingness to pay for COVID-19 vaccine in healthy controls.
Conclusions
To conclude, psychiatric patients in Chongqing, China, showed high acceptance and willingness to pay for the COVID-19 vaccine. Factors associated with willingness to pay for the COVID-19 vaccine differed between psychiatric patients and healthy controls.
A new near-infrared direct acceleration mechanism driven by Laguerre–Gaussian laser is proposed to stably accelerate and concentrate electron slice both in longitudinal and transversal directions in vacuum. Three-dimensional simulations show that a 2-μm circularly polarized ${\mathrm{LG}}_p^l$ (p = 0, l = 1, σz = −1) laser can directly manipulate attosecond electron slices in additional dimensions (angular directions) and give them annular structures and angular momentums. These annular vortex attosecond electron slices are expected to have some novel applications such as in the collimation of antiprotons in conventional linear accelerators, edge-enhancement electron imaging, structured X-ray generation, and analysis and manipulation of nanomaterials.
The Eating Assessment in Toddlers FFQ (EAT FFQ) has been shown to have good reliability and comparative validity for ranking nutrient intakes in young children. With the addition of food items (n 4), we aimed to re-assess the validity of the EAT FFQ and estimate calibration factors in a sub-sample of children (n 97) participating in the Growing Up Milk – Lite (GUMLi) randomised control trial (2015–2017). Participants completed the ninety-nine-item GUMLi EAT FFQ and record-assisted 24-h recalls (24HR) on two occasions. Energy and nutrient intakes were assessed at months 9 and 12 post-randomisation and calibration factors calculated to determine predicted estimates from the GUMLi EAT FFQ. Validity was assessed using Pearson correlation coefficients, weighted kappa (κ) and exact quartile categorisation. Calibration was calculated using linear regression models on 24HR, adjusted for sex and treatment group. Nutrient intakes were significantly correlated between the GUMLi EAT FFQ and 24HR at both time points. Energy-adjusted, de-attenuated Pearson correlations ranged from 0·3 (fibre) to 0·8 (Fe) at 9 months and from 0·3 (Ca) to 0·7 (Fe) at 12 months. Weighted κ for the quartiles ranged from 0·2 (Zn) to 0·6 (Fe) at 9 months and from 0·1 (total fat) to 0·5 (Fe) at 12 months. Exact agreement ranged from 30 to 74 %. Calibration factors predicted up to 56 % of the variation in the 24HR at 9 months and 44 % at 12 months. The GUMLi EAT FFQ remained a useful tool for ranking nutrient intakes with similar estimated validity compared with other FFQ used in children under 2 years.
In this meta-analysis we compared the effects of venlafaxine and SSRIs on work activity in MDD patients classified according to baseline severity
Methods:
Data from the work and activity item 7 of the HAMD17 of 31 pooled studies comparing venlafaxine with SSRIs were used. Subjects were divided into two groups based on their baseline HAMD17 total score ≥30/< 30.Score distributions and the proportions of patients achieving full work functionality were summarized for both LOCF and Completers at week 8. Fisher's exact test was used to compare the treatment effects..
Results:
5836 patients with a baseline HAMD17 <30 were identified. The OR for all subjects achieving full work functionality is 1.22 (95%CI 1.08, 1.36), p<0.001 for LOCF and 1.19 (95%CI 1.04, 1.38), p=0.015 for completers. The OR for subjects with work impairment at baseline is 1.17 (95%CI 1.02, 1.35), p=0.029 for LOCF and 1.13 (95%CI 0.95, 1.35), p=0.18 for completers. 656 patients with a baseline HAMD17 >30 were identified. The OR for all subjects achieving full work functionality is 1.80 (95%CI 1.24, 2.63), p=0.002 for LOCF and 1.64 (95%CI 1.05, 2.58), p=0.032 for completers. The OR for subjects with work impairment at baseline is 1.93 (95%CI 1.30, 2.87), p=0.001 for LOCF and 1.81 (95%CI 1.12, 2.92), p=0.017 for completers.
Conclusion:
This analysis demonstrates that venlafaxine is superior to SSRIs in improving work functionality in both mild/moderate and even more pronounced in severe depression. These results emphasize the impact of the treatment with venlafaxine on patients returning to normal social life.
Although the deviations of brain volume deficits in sporadic and familial first-episode schizophrenia patients (FEP) had been presented, the difference of brain asymmetries remained unidentified.
Objectives
To assess the potential differences of volumetric asymmetries of gray matter (GM) and white matter (WM) between groups.
Aims
To find out the different injury alteration of sporadic FEP and familial FEP.
Methods
42 sporadic and 30 familiar drug-naïve FEP with and 72 matched normal controls (NC) were recruited. Participants were assessed with neuropsychological tests and scanned by a 3.0T MRI to obtain T1-weighted and DTI images. Lateralization distribution maps of GM and WM volume were generated by employing optimized voxel-based morphometry. The asymmetries were analyzed by comparing calculating Laterality Index (LI) voxel by voxel.
Results
All three groups showed similar overall brain torque. Familiar FEP have more regional extensive GM asymmetry brain lesions compared to sporadic FEP. There was no shared regional lesion between two groups. LIGM and LIWM in right superior temporal were negatively correlated. Significant negative correlations were also found between LIGM of left superior parietal lobule and LIWM of right superior parietal lobule, and between LIGM of right inferior parietal lobule and LIWM of left inferior parietal lobule. The asymmetry in distinct brain regions were related to cognitive deficits especially in the domains of language and memory.
Conclusions
The two patient groups had different alteration in injuries of brain asymmetry. Familiar FEP has more GM extensive asymmetry brain region, which may correlate with their high genetic burdens.
Positive symptoms are a useful predictor of aggression in schizophrenia. Although a similar pattern of abnormal brain structures related to both positive symptoms and aggression has been reported, this observation has not yet been confirmed in a single sample.
Method
To study the association between positive symptoms and aggression in schizophrenia on a neurobiological level, a prospective meta-analytic approach was employed to analyze harmonized structural neuroimaging data from 10 research centers worldwide. We analyzed brain MRI scans from 902 individuals with a primary diagnosis of schizophrenia and 952 healthy controls.
Results
The result identified a widespread cortical thickness reduction in schizophrenia compared to their controls. Two separate meta-regression analyses revealed that a common pattern of reduced cortical gray matter thickness within the left lateral temporal lobe and right midcingulate cortex was significantly associated with both positive symptoms and aggression.
Conclusion
These findings suggested that positive symptoms such as formal thought disorder and auditory misperception, combined with cognitive impairments reflecting difficulties in deploying an adaptive control toward perceived threats, could escalate the likelihood of aggression in schizophrenia.
Laser interaction with an ultra-thin pre-structured target is investigated with the help of both two-dimensional and three-dimensional particle-in-cell simulations. With the existence of a periodic structure on the target surface, the laser seems to penetrate through the target at its fundamental frequency even if the plasma density of the target is much higher than the laser’s relativistically critical density. The particle-in-cell simulations show that the transmitted laser energy behind the pre-structured target is increased by about two orders of magnitude compared to that behind the flat target. Theoretical analyses show that the transmitted energy behind the pre-structured target is actually re-emitted by electron ‘islands’ formed by the surface plasma waves on the target surfaces. In other words, the radiation with the fundamental frequency is actually ‘surface emission’ on the target rear surface. Besides the intensity of the component with the fundamental frequency, the intensity of the high-order harmonics behind the pre-structured target is also much enhanced compared to that behind the flat target. The enhancement of the high-order harmonics is also related to the surface plasma waves generated on the target surfaces.
The second year of life is a period of nutritional vulnerability. We aimed to investigate the dietary patterns and nutrient intakes from 1 to 2 years of age during the 12-month follow-up period of the Growing Up Milk – Lite (GUMLi) trial. The GUMLi trial was a multi-centre, double-blinded, randomised controlled trial of 160 healthy 1-year-old children in Auckland, New Zealand and Brisbane, Australia. Dietary intakes were collected at baseline, 3, 6, 9 and 12 months post-randomisation, using a validated FFQ. Dietary patterns were identified using principal component analysis of the frequency of food item consumption per d. The effect of the intervention on dietary patterns and intake of eleven nutrients over the duration of the trial were investigated using random effects mixed models. A total of three dietary patterns were identified at baseline: ‘junk/snack foods’, ‘healthy/guideline foods’ and ‘breast milk/formula’. A significant group difference was observed in ‘breast milk/formula’ dietary pattern z scores at 12 months post-randomisation, where those in the GUMLi group loaded more positively on this pattern, suggesting more frequent consumption of breast milk. No difference was seen in the other two dietary patterns. Significant intervention effects were seen on nutrient intake between the GUMLi (intervention) and cows’ milk (control) groups, with lower protein and vitamin B12, and higher Fe, vitamin D, vitamin C and Zn intake in the GUMLi (intervention) group. The consumption of GUMLi did not affect dietary patterns, however, GUMLi participants had lower protein intake and higher Fe, vitamins D and C and Zn intake at 2 years of age.
Recent studies indicate that early postnatal period is a critical window for gut microbiota manipulation to optimise the immunity and body growth. This study investigated the effects of maternal faecal microbiota orally administered to neonatal piglets after birth on growth performance, selected microbial populations, intestinal permeability and the development of intestinal mucosal immune system. In total, 12 litters of crossbred newborn piglets were selected in this study. Litter size was standardised to 10 piglets. On day 1, 10 piglets in each litter were randomly allotted to the faecal microbiota transplantation (FMT) and control groups. Piglets in the FMT group were orally administrated with 2ml faecal suspension of their nursing sow per day from the age of 1 to 3 days; piglets in the control group were treated with the same dose of a placebo (0.1M potassium phosphate buffer containing 10% glycerol (vol/vol)) inoculant. The experiment lasted 21 days. On days 7, 14 and 21, plasma and faecal samples were collected for the analysis of growth-related hormones and cytokines in plasma and lipocalin-2, secretory immunoglobulin A (sIgA), selected microbiota and short-chain fatty acids (SCFAs) in faeces. Faecal microbiota transplantation increased the average daily gain of piglets during week 3 and the whole experiment period. Compared with the control group, the FMT group had increased concentrations of plasma growth hormone and IGF-1 on days 14 and 21. Faecal microbiota transplantation also reduced the incidence of diarrhoea during weeks 1 and 3 and plasma concentrations of zonulin, endotoxin and diamine oxidase activities in piglets on days 7 and 14. The populations of Lactobacillus spp. and Faecalibacterium prausnitzii and the concentrations of faecal and plasma acetate, butyrate and total SCFAs in FMT group were higher than those in the control group on day 21. Moreover, the FMT piglets have higher concentrations of plasma transforming growth factor-β and immunoglobulin G, and faecal sIgA than the control piglets on day 21. These findings indicate that early intervention with maternal faecal microbiota improves growth performance, decreases intestinal permeability, stimulates sIgA secretion, and modulates gut microbiota composition and metabolism in suckling piglets.
In vivo and in vitro trials were conducted to assess the effects of tributyrin (TB) supplementation on short-chain fatty acid (SFCA) concentrations, fibrolytic enzyme activity, nutrient digestibility and methanogenesis in adult sheep. Nine 12-month-old ruminally cannulated Small Tail ewes (initial body weight 55 ± 5.0 kg) without pregnancy were used for the in vitro trial. In vitro substrate made to offer TB at 0, 2, 4, 6 and 8 g/kg on a dry matter (DM) basis was incubated by ruminal microbes for 72 h at 39°C. Forty-five adult Small Tail ewes used for the in vivo trial were randomly assigned to five treatments with nine animals each for an 18-d period according to body weight (55 ± 5.0 kg). Total mixed ration fed to ewes was also used to offer TB at 0, 2, 4, 6 and 8 g/kg on a DM basis. The in vitro trial showed that TB supplementation linearly increased apparent digestibility of DM, crude protein, neutral detergent fibre and acid detergent fibre, and enhanced gas production and methane emissions. The in vivo trial showed that TB supplementation decreased DM intake, but enhanced ruminal fermentation efficiency. Both in vitro and in vivo trials showed that TB supplementation enhanced total SFCA concentrations and carboxymethyl cellulase activity. The results indicate that TB supplementation might exert advantage effects on rumen microbial metabolism, despite having an enhancing effect on methanogenesis.
The effects of soluble fiber inclusion in gestation diets with varying fermentation characteristics (fermentation kinetics and short-chain fatty acids (SCFA)-profile) on lactational feed intake of sows and their piglet growth over two parities were investigated using an in vitro–in vivo methodology. After breeding, 90 multiparous Landrace sows were randomized to one of three experimental diets: the control (CON) diet, konjac flour (KF) diet or sugar beet pulp (SBP) diet. All diets had similar levels of net energy, CP, insoluble fiber and NDF, but KF and SBP diets had higher soluble fiber levels than the CON diet. During gestation, the sows were restrictively fed with three different diets, but during lactation, all the sows were similarly fed ad libitum. The three gestation diets were enzymatically hydrolyzed using pepsin and pancreatin, and enzymolyzed residues were used in in vitro fermentation. Gas and SCFA production were monitored during fermentation. After fermentation, enzymolyzed residues of KF or SBP diets resulted in higher final asymptotic gas volume than those of the CON diet. The enzymolyzed residues of KF diet were mainly part of rapidly fermented fractions, whereas those of SBP diet were mainly part of slowly fermented fractions. In addition, the acetic acid, butyric acid and total SCFA concentrations of enzymolyzed residues of KF diet were higher (P<0.01) than the control and SBP diets. In the in vivo studies, on day 90 of gestation, the KF diet sows had higher plasma SCFA concentration (P<0.05) at 4 h after feeding than the CON diet sows. Furthermore, the KF diet sows had lower plasma free fatty acid (FFA) concentration (P<0.01) at 4 h after feeding, and a lower value of homeostasis model assessment (HOMA)-insulin resistance (P<0.05), but a higher value of HOMA-insulin sensitivity (P<0.01). The KF diet sows also consumed more feed during lactation (P<0.01) and weaned significantly heavier pigs (P<0.01) than the CON diet sows. The overall results showed that the high fermentation capacity KF diet contributed to an increased lactational feed intake and improved performance of piglets in the second reproductive cycle.
High-speed synchronized stereo particle-imaging velocimetry and OH planar laser-induced fluorescence (PIV/OH-PLIF) measurements are performed on multiple $R{-}\unicode[STIX]{x1D703}$ planes downstream of a high-Reynolds-number swirling jet. Dynamic-mode decomposition (DMD) – a frequency-resolved data-reduction technique – is used to identify and characterize recurrent flow structures. Illustrative results are presented in a swirling flow field for two cases – the nominal flow dynamics and where self-excited combustion driven oscillations provide strong axisymmetric narrowband forcing of the flow. The robust constituent of the nominal reacting swirl flow corresponds to a helical shear-layer disturbance at a Strouhal number ($St$) of ${\sim}0.30$, $St=fD/U_{0}$, where $f$, $D$ and $U_{0}$ denote the precessing vortex core (PVC) frequency (${\sim}800~\text{Hz}$), the swirler exit diameter (19 mm) and the bulk velocity at the swirler exit ($50~\text{m}~\text{s}^{-1}$) respectively. Planar projections of the PVC reveal a pair of oscillating skew-symmetric regions of velocity, vorticity and OH-PLIF intensity that rotate in the same direction as the mean tangential flow. During combustion instabilities, the large-amplitude acoustics-induced axisymmetric forcing of the flow results in a fundamentally different flow response dominated by a nearly axisymmetric disturbance and almost complete suppression of the large-scale helical shear-layer disturbances dominating the nominal flow. In addition, reverse axial flows around the centreline are significantly reduced. Time traces of the robust constituent show reverse axial flows around the centreline and negative axial vorticity along the inner swirling shear layer when the planar velocity is in the same direction as the mean tangential flow. For both stable and unstable combustion, recurrent flow structures decay rapidly downstream of the air swirler, as revealed by the decreasing amplitude of the velocity, axial vorticity and OH-PLIF intensity.
Introduction: Youth injured by violence is a major public health concern in Canada. It is the fourth leading cause of death in youth and the foremost reason youth visit an emergency department (ED). In Winnipeg, 20% of youth who visit an ED with an injury due to violence will have an ED visit for a subsequent violent injury within one year. Youth injured by violence are in a reflective and receptive state of mind, rendering the ED setting appropriate for intervention. Methods: We completed a randomized control trial in November 2015 comparing wraparound care for youth age 14 - 24 who were injured by violence to standard ED care. Youth were excluded if their injury was due to child maltreatment, sexual assault or self-harm. An adapted pre-consent randomization methodology was used. The intervention was developed using a community based participatory research approach. Wraparound care was delivered by a support worker with lived experience with violence. Support workers were on call 24/7 in order to start the intervention in the ED and take advantage of the “teachable moment.” Care continued in the community for approximately one year. Results: A total of 133 youth were randomized (68 intervention, 65 control) in one year. There was no difference in age, gender, or severity of injury between the two groups. Patients randomized to the intervention spent a median of 30 minutes less in the ED than those receiving standard care (p=0.22). Youth are safely housed, have enrolled in education opportunities, and are engaged in addictions care. Results of a chart review examining repeat visits to the ED for violent injury, substance use and mental health will be completed in Spring 2016 and will be presented. Conclusion: There were no differences between standard care and intervention groups on baseline characteristics reflecting effective randomization. The introduction of an intervention at bedside in the ED did not have a negative impact on patient length of stay.
The present study investigated the effects of different levels of urea nitrogen (N) fertilizer on nutrient accumulation, in vitro rumen gas production and fermentation characteristics of forage oat straw (FOS) from oats (Avena sativa L. ‘Qinghai 444’) grown in the Tibet region of China. Fertilizer, applied at seeding (day 1), stem elongation (days 52–54) and heading (days 63–67), increased plant height and prolonged the maturity stage of the plant by 4–11 days compared with the non-fertilized control. Oat plants were harvested at maturity at the node 3–4 cm above ground, and then separated into grains and FOS. Both FOS and grain yields increased quadratically with increasing N fertilization, and their theoretical maximums occurred at the N fertilizing rates of 439 and 385 kg/ha, respectively. Increases in N fertilization did not affect the hemicellulose content of FOS, but substantially promoted the accumulation of crude protein, cellulose and lignin, resulting in a decrease in the energy content available for metabolism. A 72-h incubation of FOS with rumen fluids from lactating cows showed that increasing N resulted in FOS that showed a slower fermentation rate, decreased in vitro dry matter disappearance and lower cumulative gas production, but unchanged fermentation gas composition. Nitrogen fertilization increased the final pH in culture fluids and decreased the microbial volatile fatty acid (VFA) production. The molar proportions of acetate and propionate were not affected, but molar propionate proportion decreased linearly with increasing urea fertilization, and consequently, the ratio of lipogenic (e.g., acetate and butyrate)-to-glucogenic acids (propionate) tended to increase. In brief, increasing urea N fertilization promoted the growth of forage oats and increased the biomass yield as well as the crude protein and cellulose content of FOS. Considering the negative effect of increased lignin content on nutrient digestibility and total VFA production, the suggested range of urea N fertilization is 156–363 kg N/ha for forage oats planted in Tibet to retain the nutritive value of FOS in the rumen.
Among several potential animal models that can be used for adipogenic studies, Wagyu cattle is the one that presents unique molecular mechanisms underlying the deposit of substantial amounts of intramuscular fat. As such, this review is focused on current knowledge of such mechanisms related to adipose tissue deposition using Wagyu cattle as model. So abundant is the lipid accumulation in the skeletal muscles of these animals that in many cases, the muscle cross-sectional area appears more white (adipose tissue) than red (muscle fibers). This enhanced marbling accumulation is morphologically similar to that seen in numerous skeletal muscle dysfunctions, disease states and myopathies; this might indicate cross-similar mechanisms between such dysfunctions and fat deposition in Wagyu breed. Animal models can be used not only for a better understanding of fat deposition in livestock, but also as models to an increased comprehension on molecular mechanisms behind human conditions. This revision underlies some of the complex molecular processes of fat deposition in animals.
Coxsackievirus A6 (CV-A6), coxsackievirus A16 (CV-A16) and enterovirus 71 (EV-A71) were the major enteroviruses causing nationwide hand, foot and mouth disease (HFMD) epidemics in Singapore in the last decade. We estimated the basic reproduction number (R0) of these enteroviruses to obtain a better understanding of their transmission dynamics. We merged records of cases from HFMD outbreaks reported between 2007 and 2012 with laboratory results from virological surveillance. R0 was estimated based on the cumulative number of reported cases in the initial growth phase of each outbreak associated with the particular enterovirus type. A total of 33 HFMD outbreaks were selected based on the inclusion criteria specified for our study, of which five were associated with CV-A6, 13 with CV-A16, and 15 with EV-A71. The median R0 was estimated to be 5·04 [interquartile range (IQR) 3·57–5·16] for CV-A6, 2·42 (IQR 1·85–3·36) for CV-A16, and 3·50 (IQR 2·36–4·53) for EV-A71. R0 was not significantly associated with number of infected children (P = 0·86), number of exposed children (P = 0·94), and duration of the outbreak (P = 0·05). These enterovirus-specific R0 estimates will be helpful in providing insights into the potential growth of future HFMD epidemics and outbreaks for timely implementation of disease control measures, together with disease dynamics such as severity of the cases.
Dysregulation of the striatum and altered corticostriatal connectivity have been associated with psychotic disorders. Social anhedonia has been identified as a predictor for the development of schizophrenia spectrum disorders. The aim of the present study was to examine corticostriatal functional connectivity in individuals with high social anhedonia.
Method.
Twenty-one participants with high social anhedonia score and 30 with low social anhedonia score measured by the Chinese version of the Revised Social Anhedonia Scale were recruited from university undergraduates (age 17–21 years) to undergo resting-state functional MRI scans. Six subdivisions of the striatum in each hemisphere were defined as seeds. Voxel-wise functional connectivity analyses were conducted between each seed and the whole brain voxels, followed by repeated-measures ANOVA for the group effect.
Results.
Participants with high social anhedonia showed hyper-connectivity between the ventral striatum and the anterior cingulate cortex and the insula, and between the dorsal striatum and the motor cortex. Hypo-connectivity in participants with high social anhedonia was also observed between the ventral striatum and the posterior cingulate cortex. Partial correlation analyses further showed that the functional connectivity between the ventral striatum and the prefrontal cortex was associated with pleasure experience and emotional suppression.
Conclusions.
Our findings suggest that altered corticostriatal connectivity can be found in participants with high levels of social anhedonia. Since social anhedonia has been considered a predictor for schizophrenia spectrum disorders, our results may provide novel evidence on the early changes in brain functional connectivity in at-risk individuals.
A completely randomized experiment for planting highland barley in 36 field plots of the Lhasa Agricultural Experiment Station was applied to investigate the effect of urea nitrogen (N) fertilization levels of 0 (control), 156, 258, 363, 465 and 570 kg/ha on nutrient accumulation, in vitro rumen gas production and fermentation characteristics of highland barley straw (HBS). Each urea application was divided into three portions of 0.4, 0.3 and 0.3 and sequentially fertilized at seeding (growth stage (GS) 0), stem elongation (GS 32) and heading (GS 49), respectively. The maturity stage lasted 5–13 days longer in response to the urea N fertilization compared with the control. After removing grains, HBS biomass was harvested at maturity. The biomass yields of leaf, stem, straw and grain were increased quadratically with increasing urea N fertilization, and HBS and grain yields peaked at the estimated urea N fertilization levels of 385 and 428 kg/ha, respectively. The increase of urea N fertilization increased the accumulation of crude protein, cellulose and lignin, and decreased the content of ash and hemicellulose in HBS, resulting in a decrease of the energy content available to be metabolized. After incubating HBS for 72 h with rumen fluids from lactating cows, the urea N fertilization decreased in vitro dry matter disappearance and cumulative gas production, and slightly altered fermentation end-gas composition. Urea N fertilization decreased microbial volatile fatty acid production, but did not alter the ratio of lipogenic acetate and butyrate to glucogenic propionate. In a brief, the current urea N fertilization strategy promoted the growth of the highland barley and increased biomass yield, protein and cellulose accumulation of HBS. A urea N fertilization level ⩽385 kg/ha could be sufficient for growth of highland barley in Tibet without a consequent nutritive reduction in ruminal digestion.
Converging evidence has revealed both functional and structural abnormalities in adolescents with early-onset conduct disorder (EO-CD). The neurological abnormalities underlying EO-CD may be different from that of adolescent-onset conduct disorder (AO-CD) patients. However, the cortical structure in AO-CD patients remains largely unknown. The aim of the present study was to investigate the cortical alterations in AO-CD patients.
Method.
We investigated T1-weighted brain images from AO-CD patients and age-, gender- and intelligence quotient-matched controls. Cortical structures including thickness, folding and surface area were measured using the surface-based morphometric method. Furthermore, we assessed impulsivity and antisocial symptoms using the Barratt Impulsiveness Scale (BIS) and the Antisocial Process Screening Device (APSD).
Results.
Compared with the controls, we found significant cortical thinning in the paralimbic system in AO-CD patients. For the first time, we observed cortical thinning in the precuneus/posterior cingulate cortex (PCC) in AO-CD patients which has not been reported in EO-CD patients. Prominent folding abnormalities were found in the paralimbic structures and frontal cortex while diminished surface areas were shown in the precentral and inferior temporal cortex. Furthermore, cortical thickness of the paralimbic structures was found to be negatively correlated with impulsivity and antisocial behaviors measured by the BIS and APSD, respectively.
Conclusions.
The present study indicates that AO-CD is characterized by cortical structural abnormalities in the paralimbic system, and, in particular, we highlight the potential role of deficient structures including the precuneus and PCC in the etiology of AO-CD.