We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Climate change poses a major threat to marine ecosystems, with its effects felt worldwide. A major effect of climate change on marine ecosystems is the rise in water temperature, leading to a northward expansion of habitats for marine organisms. Herdmania momus, a species of ascidians (sea squirts), originally found in tropical and subtropical regions, was introduced to the Korean Peninsula. In this study, we examined the habitat of H. momus along the southeastern coast of the Korean Peninsula between 2016 and 2022. We found that H. momus settlements were observed across the entire survey area, with confirmed habitation in Busan in 2016, Ulsan in 2021, and Gyeongju (the northernmost location) in 2022. The observed habitation trend indicates a rapid geographical expansion, occurring approximately 79 years earlier than previously predicted. These observations demonstrate that marine organisms are undergoing a more rapid geographical expansion than previously projected. These unexpected findings should inform government policies related to proactive measures and strategies for managing the impact of climate change on marine ecosystems.
There are growing concerns about the impact of the COVID-19 pandemic on the mental health of older adults. We examined the effect of the pandemic on the risk of depression in older adults.
Methods
We analyzed data from the prospective cohort study of Korean older adults, which has been followed every 2 years. Among the 2308 participants who completed both the third and the fourth follow-up assessments, 58.4% completed their fourth follow-up before the outbreak of COVID-19 and the rest completed it during the pandemic. We conducted face-to-face diagnostic interviews using Mini International Neuropsychiatric Interview and used Geriatric Depression Scale. We performed generalized estimating equations and logistic regression analyses.
Results
The COVID-19 pandemic was associated with increased depressive symptoms in older adults [b (standard error) = 0.42 (0.20), p = 0.040] and a doubling of the risk for incident depressive disorder even in euthymic older adults without a history of depression (odds ratio = 2.44, 95% confidence interval 1.18–5.02, p = 0.016). Less social activities, which was associated with the risk of depressive disorder before the pandemic, was not associated with the risk of depressive disorder during the pandemic. However, less family gatherings, which was not associated with the risk of depressive disorder before the pandemic, was associated with the doubled risk of depressive disorder during the pandemic.
Conclusions
The COVID-19 pandemic significantly influences the risk of late-life depression in the community. Older adults with a lack of family gatherings may be particularly vulnerable.
Offspring generated by in vitro fertilization (IVF) are believed to be healthy but display a possible predisposition to chronic diseases, like hypertension and glucose intolerance. Since epigenetic changes are believed to underlie such phenotype, this study aimed at describing global DNA methylation changes in the liver of adult mice generated by natural mating (FB group) or by IVF. Embryos were generated by IVF or natural mating. At 30 weeks of age, mice were sacrificed. The liver was removed, and global DNA methylation was assessed using whole-genome bisulfite sequencing (WGBS). Genomic Regions for Enrichment Analysis Tool (GREAT) and G:Profilerβ were used to identify differentially methylated regions (DMRs) and for functional enrichment analysis. Overrepresented gene ontology terms were summarized with REVIGO, while canonical pathways (CPs) were identified with Ingenuity® Pathway Analysis. Overall, 2692 DMRs (4.91%) were different between the groups. The majority of DMRs (84.92%) were hypomethylated in the IVF group. Surprisingly, only 0.16% of CpG islands were differentially methylated and only a few DMRs were located on known gene promoters (n = 283) or enhancers (n = 190). Notably, the long-interspersed element (LINE), short-interspersed element (SINE), and long terminal repeat (LTR1) transposable elements showed reduced methylation (P < 0.05) in IVF livers. Cellular metabolic process, hepatic fibrosis, and insulin receptor signaling were some of the principal biological processes and CPs modified by IVF. In summary, IVF modifies the DNA methylation signature in the adult liver, resulting in hypomethylation of genes involved in metabolism and gene transcription regulation. These findings may shed light on the mechanisms underlying the developmental origin of health and disease.
To investigate the feasibility of using an ultraviolet light-emitting diode (UV LED) robot for the terminal decontamination of coronavirus disease 2019 (COVID-19) patient rooms.
Methods:
We assessed the presence of viral RNA in samples from environmental surfaces before and after UV LED irradiation in COVID-19 patient rooms after patient discharge.
Results:
We analyzed 216 environmental samples from 17 rooms: 2 from airborne infection isolation rooms (AIIRs) in the intensive care unit (ICU) and 15 from isolation rooms in the community treatment center (CTC). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was detected in 40 (18.5%) of 216 samples after patient discharge: 12 (33.3%) of 36 samples from AIIRs in the ICU, and 28 (15.6%) of 180 samples from isolation rooms in the CTC. In 1 AIIR, all samples were PCR negative after UV LED irradiation. In the CTC rooms, 14 (8.6%) of the 163 samples were PCR positive after UV LED irradiation. However, viable virus was not recovered from the culture of any of the PCR-positive samples.
Conclusions:
Although no viable virus was recovered, SARS-CoV-2 RNA was detected on various environmental surfaces. The use of a UV LED disinfection robot was effective in spacious areas such as an ICU, but its effects varied in small spaces like CTC rooms. These findings suggest that the UV LED robot may need enough space to disinfect rooms without recontamination by machine wheels or insufficient disinfection by shadowing.
Clonorchis sinensis (C. sinensis), a trematode parasite that invades the hypoxic hepatobiliary tract of vertebrate hosts requires a considerable amount of oxygen for its sexual reproduction and energy metabolism. However, little is known regarding the molecular mechanism of C. sinensis involved in the adaptation to the hypoxic environments. In this study, we investigated the molecular structures and induction patterns of hypoxia-inducible factor-1α (HIF-1α) and other basic helix–loop–helix and Per–Arnt–Sim (bHLH–PAS) domain-containing proteins such as HIF-1β, single-minded protein and aryl hydrocarbon receptor, which might prompt adaptive response to hypoxia, in C. sinensis. These proteins possessed various bHLH–PAS family-specific domains. Expression of C. sinensis HIF-1α (CsHIF-1α) was highly induced in worms which were either exposed to a hypoxic condition or co-incubated with human cholangiocytes. In addition to oxygen, nitric oxide and nitrite affected the CsHIF-1α expression depending on the surrounding oxygen concentration. Treatment using a prolyl hydroxylase-domain protein inhibitor under 20%-oxygen condition resulted in an increase in the CsHIF-1α level. Conversely, the other bHLH–PAS genes were less responsive to these exogenous stimuli. We suggest that nitrite and nitric oxide, as well as oxygen, coordinately involve in the regulation of HIF-1α expression to adapt to the hypoxic host environments in C. sinensis.
Our objective was to evaluate long-term altered appearance, distress, and body image in posttreatment breast cancer patients and compare them with those of patients undergoing active treatment and with general population controls.
Method:
We conducted a cross-sectional survey between May and December of 2010. We studied 138 breast cancer patients undergoing active treatment and 128 posttreatment patients from 23 Korean hospitals and 315 age- and area-matched subjects drawn from the general population. Breast, hair, and skin changes, distress, and body image were assessed using visual analogue scales and the EORTC BR–23. Average levels of distress were compared across groups, and linear regression was utilized to identify the factors associated with body image.
Results:
Compared to active-treatment patients, posttreatment patients reported similar breast changes (6.6 vs. 6.2), hair loss (7.7 vs. 6.7), and skin changes (5.8 vs. 5.4), and both groups had significantly more severe changes than those of the general population controls (p < 0.01). For a similar level of altered appearance, however, breast cancer patients experienced significantly higher levels of distress than the general population. In multivariate analysis, patients with high altered appearance distress reported significantly poorer body image (–20.7, CI95% = –28.3 to –13.1) than patients with low distress.
Significance of results:
Posttreatment breast cancer patients experienced similar levels of altered appearance, distress, and body-image disturbance relative to patients undergoing active treatment but significantly higher distress and poorer body image than members of the general population. Healthcare professionals should acknowledge the possible long-term effects of altered appearance among breast cancer survivors and help them to manage the associated distress and psychological consequences.
Personality may predispose family caregivers to experience caregiving differently in similar situations and influence the outcomes of caregiving. A limited body of research has examined the role of some personality traits for health-related quality of life (HRQoL) among family caregivers of persons with dementia (PWD) in relation to burden and depression.
Methods:
Data from a large clinic-based national study in South Korea, the Caregivers of Alzheimer's Disease Research (CARE), were analyzed (N = 476). Path analysis was performed to explore the association between family caregivers’ personality traits and HRQoL. With depression and burden as mediating factors, direct and indirect associations between five personality traits and HRQoL of family caregivers were examined.
Results:
Results demonstrated the mediating role of caregiver burden and depression in linking two personality traits (neuroticism and extraversion) and HRQoL. Neuroticism and extraversion directly and indirectly influenced the mental HRQoL of caregivers. Neuroticism and extraversion only indirectly influenced their physical HRQoL. Neuroticism increased the caregiver's depression, whereas extraversion decreased it. Neuroticism only was mediated by burden to influence depression and mental and physical HRQoL.
Conclusions:
Personality traits can influence caregiving outcomes and be viewed as an individual resource of the caregiver. A family caregiver's personality characteristics need to be assessed for tailoring support programs to get the optimal benefits from caregiver interventions.
In this paper, the electrical properties of bottom-gate (BG) polycrystalline silicon (poly-Si) thin-film transistors (TFTs) by NiSi2 seed-induced lateral crystallization (SILC) and its applications are presented. Sequential lateral solidification (SLS), which is one of crystallization methods, is known to have poor electrical properties of TFTs with BG structures due to problems induced by laser. Therefore, the laser method cannot be used to well-developed production line of amorphous-Si (a-Si) TFT, resulting in large initial investment cost to change fabrication procedures. On the other hand, the BG poly-Si TFT by SILC (SILC-BGPS TFT) has basically compatible process flows with that of the a-Si TFT. The SILC-BGPS TFT exhibited threshold voltage of -3.9 V, steep subthreshold slope of 130 mV/dec, a high field-effect mobility of 129 cm2/Vs , and Ion/Ioff ratio of ∼106.
Decreased hemoglobin levels increase the risk of developing dementia among the elderly. However, the underlying mechanisms that link decreased hemoglobin levels to incident dementia still remain unclear, possibly due to the fact that few studies have reported on the relationship between low hemoglobin levels and neuroimaging markers. We, therefore, investigated the relationships between decreased hemoglobin levels, cerebral small-vessel disease (CSVD), and cortical atrophy in cognitively healthy women and men.
Methods:
Cognitively normal women (n = 1,022) and men (n = 1,018) who underwent medical check-ups and magnetic resonance imaging (MRI) were enrolled at a health promotion center. We measured hemoglobin levels, white matter hyperintensities (WMH) scales, lacunes, and microbleeds. Cortical thickness was automatically measured using surface based methods. Multivariate regression analyses were performed after controlling for possible confounders.
Results:
Decreased hemoglobin levels were not associated with the presence of WMH, lacunes, or microbleeds in women and men. Among women, decreased hemoglobin levels were associated with decreased cortical thickness in the frontal (Estimates, 95% confidence interval, −0.007, (−0.013, −0.001)), temporal (−0.010, (−0.018, −0.002)), parietal (−0.009, (−0.015, −0.003)), and occipital regions (−0.011, (−0.019, −0.003)). Among men, however, no associations were observed between hemoglobin levels and cortical thickness.
Conclusion:
Our findings suggested that decreased hemoglobin levels affected cortical atrophy, but not increased CSVD, among women, although the association is modest. Given the paucity of modifiable risk factors for age-related cognitive decline, our results have important public health implications.
The junction resistance control of conducting networks is a crucial factor for high performance of the network-structured conducting film. Here, we show that silver nanowire (AgNW) networks can be stabilized by using single-walled carbon nanotubes (SWCNTs) which were functionalized with 2-ureido-4[1H]pyrimidinone (UHP) moieties. UHP-modified SWCNTs allowed us to fabricate AgNW suspension containing SWCNTs without adding additional dispersant molecules. The stabilization of AgNW networks was achieved by minimizing the joule heating at the NW-NW junction assisted by in-situ interconnection with the work function modulated SWCNTs. We propose that the electrical transportation pathway was modulated by the SWCNTs through the SWCNT-AgNW junctions, which results in a relatively lower junction resistance than the NW-NW junction in the network film.
There is increasing evidence of a relationship between underweight or obesity and dementia risk. Several studies have investigated the relationship between body weight and brain atrophy, a pathological change preceding dementia, but their results are inconsistent. Therefore, we aimed to evaluate the relationship between body mass index (BMI) and cortical atrophy among cognitively normal participants.
Methods:
We recruited cognitively normal participants (n = 1,111) who underwent medical checkups and detailed neurologic screening, including magnetic resonance imaging (MRI) in the health screening visits between September 2008 and December 2011. The main outcome was cortical thickness measured using MRI. The number of subjects with five BMI groups in men/women was 9/9, 148/258, 185/128, 149/111, and 64/50 in underweight, normal, overweight, mild obesity, and moderate to severe obesity, respectively. Linear and non-linear relationships between BMI and cortical thickness were examined using multiple linear regression analysis and generalized additive models after adjustment for potential confounders.
Results:
Among men, underweight participants showed significant cortical thinning in the frontal and temporal regions compared to normal weight participants, while overweight and mildly obese participants had greater cortical thicknesses in the frontal region and the frontal, temporal, and occipital regions, respectively. However, cortical thickness in each brain region was not significantly different in normal weight and moderate to severe obesity groups. Among women, the association between BMI and cortical thickness was not statistically significant.
Conclusions:
Our findings suggested that underweight might be an important risk factor for pathological changes in the brain, while overweight or mild obesity may be inversely associated with cortical atrophy in cognitively normal elderly males.
Epidemiological studies have reported that higher education (HE) is associated with a reduced risk of incident Alzheimer's disease (AD). However, after the clinical onset of AD, patients with HE levels show more rapid cognitive decline than patients with lower education (LE) levels. Although education level and cognition have been linked, there have been few longitudinal studies investigating the relationship between education level and cortical decline in patients with AD. The aim of this study was to compare the topography of cortical atrophy longitudinally between AD patients with HE (HE-AD) and AD patients with LE (LE-AD).
Methods:
We prospectively recruited 36 patients with early-stage AD and 14 normal controls. The patients were classified into two groups according to educational level, 23 HE-AD (>9 years) and 13 LE-AD (≤9 years).
Results:
As AD progressed over the 5-year longitudinal follow-ups, the HE-AD showed a significant group-by-time interaction in the right dorsolateral frontal and precuneus, and the left parahippocampal regions compared to the LE-AD.
Conclusion:
Our study reveals that the preliminary longitudinal effect of HE accelerates cortical atrophy in AD patients over time, which underlines the importance of education level for predicting prognosis.
By chemical vapor deposition, aligned single wall carbon nanotubes (SWNTs) and a network of SWNTs are simultaneously grown as the channel and the source–drain electrodes of thin film transistors (TFTs). The increase of aligned SWNTs increases the channel conductance without changing the contact resistance. However, the increase of network-type SWNTs from 19 to 32.5 (SWNTs/μm) decreases the contact resistance fivefold. The contact resistance of all-SWNT TFT is three times lower compared with that of an SWNT TFT using metal electrodes. The all-SWNT TFTs transferred on polyethylene terephthalate (PET) show a transparency of >80% in the visible range of wavelengths.
We investigated the pressure dependence of the inductive coupled plasma (ICP) oxidation on the electrical characteristics of the thin oxide films. Activation energies and electron temperatures with different pressures were estimated. To demonstrate the pressure effect on the plasma oxide quality, simple N type metal-oxide-semiconductor (NMOS) transistors were fabricated and investigated in a few electrical properties. At higher pressure than 200mTorr, plasma oxide has a slightly higher on-current and a lower interfacial trap density. The on-current gain seems to be related to the field mobility increase and the lower defective interface to the electron temperature during oxidation.
NiCr films were thermally evaporated on the Mn-Ni-Co-O thick-film substrates. The NiCr/Mn-Ni-Co-O bi-layer systems were tested in a thermal shock chamber with three temperature differences of 150, 175 and 200°C. The systems were considered to have failed when the sheet resistance of NiCr films changed by 30% relative to an initial value. As the cyclic repetition of thermal shock increased, the sheet resistance of NiCr coatings increased. The Coffin-Manson equation was applied to the failure mechanism of cracking of NiCr coatings and the SEM observation of cracks and delamination in NiCr coatings due to thermal cycling agreed well with the failure mechanism.
The present study was designed to define how dietary fat type regulates body adiposity in dietary obesity-susceptible (DOS) Sprague–Dawley (SD) rats. Eighty-three SD rats received a purified diet containing 50 g maize oil (MO)/kg for 3 weeks and then thirty-nine of the rats, designated as the DOS rats, were allotted to diets containing 160 g MO (DOS-MO), beef tallow (DOS-BT) or fish oil (DOS-FO)/kg for 9 weeks. As a result of the experiment, the DOS-FO rats had significantly (P<0·05) reduced weight gain and abdominal and epididymal fat-pad mass than the DOS-MO and DOS-BT rats. Serum leptin level was also significantly (P<0·05) lower in the DOS-FO rats; however, hypothalamic leptin receptor (a and b) mRNA and neuropeptide Y expressions were not altered by dietary fat sources. A lower acetyl-CoA carboxylase mRNA expression in the liver was observed in the DOS-FO group, whereas hepatic peroxisome proliferator-activated receptor-γ mRNA and protein expressions were markedly elevated in the DOS-FO group compared with those in the other groups. We did not observe differences in acetyl-CoA carboxylase and peroxisome proliferator-activated receptor-γ expressions in epididymal fat of the DOS rats consuming MO, BT or FO. It is concluded from our present observations that dietary fat type, especially that rich in FO, plays a potential role in down-regulation of adiposity by altering hepatic lipogenic genes, rather than feeding behaviour, in the DOS-SD rats.
Porous low dielectric films containing nano pores (∼20Å) with low dielectric constant (<2.2), have been prepared by using various kinds of cyclodextrin derivatives as porogenic materials. The pore structure such as pore size and interconnectivity can be controlled by changing functional groups of the cyclodextrin derivatives. We found that mechanical properties of porous low-k thin film prepared with mCSSQ (modified cyclic silsesquioxane) precursor and cyclodextrin derivatives were correlated with the pore interconnection length. The longer the interconnection length of nanopores in the thin film, the worse the mechanical properties of the thin film (such as hardness and modulus) even though the pore diameter of the films were microporous (∼2nm).
RF MEMS(Micro-Electro-Mechanical-System) switch technology is one of powerful solution for future RF systems. This technology provides low insertion loss, High linearity and broad bandwidth. Wide driving membrane used MEMS switch can reduce driving voltage but it is easy to bend because of the stress gradient. In order to solve this problem we fabricated Au cantilever in various sputtering condition and various substrate materials. As a result of this experiment, we fabricated cantilever which was bent within 1 um, with 2 um thickness and 340 um length. We applied this condition to RF MEMS switch and we fabricated switch membrane within 1 um bend, under 10MPa stress gradient.
The BZN pyrochlore thin films were prepared on platinized Si substrates using a reactive RF magnetron sputtering. The structures, surface morphologies, dielectric properties and voltage tunable properties of films with deposition parameters were investigated. The BZN thin films have a cubic pyrochlore phase and secondary phases of zinc niobate, bismuth niobate when crystallized at 600° 800°. The dielectric constant and tunability of thin films are O2/Ar ratio and post-annealing temperature dependent. The BZN thin films sputtered in 15% O2 and annealed at 700° had a dielectric constant of 153, tan δof~0.003 and maximum tunability of 14% at 1,000kV/cm.