We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Objectives/Goals: Transmission-blocking vaccines hold promise for malaria elimination by reducing community transmission. But a major challenge that limits the development of efficacious vaccines is the vast parasite’s genetic diversity. This work aims to assess the genetic diversity of the Pfs25 vaccine candidate in complex infections across African countries. Methods/Study Population: We employed next-generation amplicon deep sequencing to identify nonsynonymous single nucleotide polymorphisms (SNPs) in 194 Plasmodium falciparum samples from four endemic African countries: Senegal, Tanzania, Ghana, and Burkina Faso. The individuals aged between 1 and 74 years, but most of them ranged from 1 to 19 years, and all presented symptomatic P. falciparum infection. The genome amplicon sequencing was analyzed using Geneious software and P. falciparum 3D7 as a reference. The SPNs were called with a minimum coverage of 500bp, and for this work, we used a very sensitive threshold of 1% variant frequency to determine the frequency of SNPs. The identified SNPs were threaded to the crystal structure of the Pfs25 protein, which allowed us to predict the impact of the novel SNP in the protein or antibody binding. Results/Anticipated Results: We identified 26 SNPs including 24 novel variants, and assessed their population prevalence and variant frequency in complex infections. Notably, five variants were detected in multiple samples (L63V, V143I, S39G, L63P, and E59G), while the remaining 21 were rare variants found in individual samples. Analysis of country-specific prevalence showed varying proportions of mutant alleles, with Ghana exhibiting the highest prevalence (44.6%), followed by Tanzania (12%), Senegal (11.8%), and Burkina Faso (2.7%). Moreover, we categorized SNPs based on their frequency, identifying dominant variants (>25%), and rare variants (Discussion/Significance of Impact: We identified additional SNPs in the Pfs25 gene beyond those previously reported. However, the majority of these newly discovered display low variant frequency and population prevalence. Further research exploring the functional implications of these variations will be important to elucidate their role in malaria transmission.
The seminal Bolgiano–Obukhov (BO) theory established the fundamental framework for turbulent mixing and energy transfer in stably stratified fluids. However, the presence of BO scalings remains debatable despite their being observed in stably stratified atmospheric layers and convective turbulence. In this study, we performed precise temperature measurements with 51 high-resolution loggers above the seafloor for 46 h on the continental shelf of the northern South China Sea. The temperature observation exhibits three layers with increasing distance from the seafloor: the bottom mixed layer (BML), the mixing zone and the internal wave zone. A BO-like scaling $\alpha =-1.34\pm 0.10$ is observed in the temperature spectrum when the BML is in a weakly stable stratified ($N\sim 0.0018$ rad s$^{-1}$) and strongly sheared ($Ri\sim 0.0027$) condition, whereas in the unstably stratified convective turbulence of the BML, the scaling $\alpha =-1.76\pm 0.10$ clearly deviated from the BO theory but approached the classical $-$5/3 scaling in isotropic turbulence. This suggests that the convective turbulence is not the promise of BO scaling. In the mixing zone, where internal waves alternately interact with the BML, the scaling follows the Kolmogorov scaling. In the internal wave zone, the scaling $\alpha =-2.12 \pm 0.15$ is observed in the turbulence range and possible mechanisms are provided.
The efficacy of steady large-amplitude blowing/suction on instability and transition control for a hypersonic flat plate boundary layer with Mach number 5.86 is investigated systematically. The influence of the blowing/suction flux and amplitude on instability is examined through direct numerical simulation and resolvent analysis. When a relatively small flux is used, the two-dimensional instability critical frequency that distinguishes the promotion/suppression mode effect closely aligns with the synchronisation frequency. For the oblique wave, as the spanwise wavenumber increases, the suppression effects would become weaker and the mode suppression bandwidth diminishes/increases in general in the blowing/suction control. Increasing the blowing/suction flux can effectively broaden the frequency bandwidth of disturbance suppression. The influence of amplitude on disturbance suppression is weak in a scenario of constant flux. To gain a deeper insight into disturbance suppression mechanism, momentum potential theory (MPT) and kinetic energy budget analysis are further employed in analysing disturbance evolution with and without control. When the disturbance is suppressed, the blowing induces the transport of certain acoustic components along the compression wave out of the boundary layer, whereas the suction does not. The velocity fluctuations are derived from the momentum fluctuations of the MPT. Compared with the momentum fluctuations, the evolutions indicated by each component's velocity fluctuations greatly facilitate the investigations of the acoustic nature of the second mode. The rapid variation of disturbance amplitude near the blowing is caused by the oscillations of the acoustic component and phase speed differences between vortical and thermal components. Kinetic energy budget analysis is performed to address the non-parallel effect of the boundary layer introduced by blowing/suction, which tends to suppress disturbances near the blowing. Moreover, viscous effects leading to energy dissipation are identified to be stronger in regions where the boundary layer is rapidly thickening. Finally, it is demonstrated that a flat plate boundary layer transition triggered by a random disturbance can be delayed by a blowing/suction combination control. The resolvent analysis further demonstrates that disturbances with frequencies that dominate the early transition stage are dampened in the controlled base flow.
The reconfigurable mechanisms can satisfy the requirements of changing environments, working conditions, and tasks on the function and performance of the mechanism and can be applied to machine tool manufacturing, space detection, etc. Inspired by the single-vertex fivefold origami pattern, a new reconfigurable parallel mechanism is proposed in this paper, which has special singular positions and stable motion due to replicating the stabilizing kinematic properties of origami. Through analyzing the topologic change of the folding process of the pattern and treating it as a reconfigurable joint, a new reconfigurable parallel mechanism with 3, 4, 5, or 6 degrees of freedom is obtained. Then, the kinematics solution, workspace, and singularity of the mechanism are calculated. The results indicate that the singular configuration of the origami-derived reconfigurable parallel mechanism is mainly located in a special plane, and the scope of the workspace is still large after the configuration change. The mechanism has the potential to adapt to multiple tasks and working conditions through the conversion among different configurations by folding reconfigurable joints on the branch chain.
In the present study, acid-modified attapulgite was used, as an adsorbent, to remove as much Cd2+ as possible from aqueous solution. Static adsorption experiments using powdered acid-modified attapulgite, and dynamic adsorption using granular acid-modifed attapulgite, were conducted to explore the practical application of modified attapulgite in the adsorption of Cd2+. The modified attapulgite had a larger specific surface area and thinner fibrous crystals than the unmodified version. No obvious differences were noted, in terms of the crystal structure, between the natural attapulgite and the modified version. The effects of initial concentration, pH, contact time, and ionic strength on the adsorption of Cd2+ were investigated, and the results showed that the adsorption capacity of the modified attapulgite was increased with increasing pH and the initial Cd2+ concentration. The adsorption properties were analyzed by means of dynamic adsorption tests with respect to various Cd2+ concentrations and flow rates. The maximum adsorption capacity of 8.83 mg/g occurred at a flow rate of 1 mL/min and at an initial concentration of 75 mg/L. Because there was better accord between the data and a pseudo-second order model than a pseudo-first-order model, external mass transfer is suggested to be the rate-controlling process. The experimental data were also fitted for the intraparticle diffusion model, implying that the intraparticle diffusion of Cd2+ onto the modified attapulgite was also important for controlling the adsorption process. The Bohart-Adams model was more suitable than the Thomas model for describing the dynamic behavior with respect to the flow rate and the initial Cd2+ concentration. This research provided the theoretical basis for the dynamic adsorption of Cd2+ on the modified attapulgite. Compared to the powdered modified attapulgite, the dynamic adsorption by granular modified attapulgite appeared more favorable in terms of practical application.
In this paper, we design and fabricate dual-tunable waveguides in a two-dimensional periodic plate with threaded holes. Dual tunability is realized by using rods held with nuts as well as assembly prestress of the nuts. A straight waveguide, a bent waveguide, and a wave splitter are designed by changing the distribution of rods and nuts in different circuits. The experimental and numerical results show that the frequencies of guided waves can be tuned by the assembly prestress. By increasing the amount of prestress, the frequency range of the passing band can be shifted upward. Confinements, guiding, and splitting of Lamb waves are clearly observed in both experimental measurements and numerical simulations. This work is essential for the practical design of reconfigurable phononic devices.
Real-time gait trajectory planning is challenging for legged robots walking on unknown terrain. In this paper, to realize a more efficient and faster motion control of a quadrupedal robot, we propose an optimized gait planning generator (GPG) based on the decision tree (DT) and random forest (RF) model of the robot leg workspace. First, the framework of this embedded GPG and some of the modules associated with it are illustrated. Aiming at the leg workspace model described by DT and RF used in GPG, this paper introduces in detail how to collect the original data needed for training the model and puts forward an Interpolation Labeling with Dilation and Erosion (ILDE) data processing algorithm. After the DT and RF models are trained, we preliminarily evaluate their performance. We then present how these models can be used to predict the location relation between a spatial point and the leg workspace based on its distributional features. The DT model takes only 0.00011 s to process a sample, while the RF model can give the prediction probability. As a complement, the PID inverse kinematic model used in GPG is also mentioned. Finally, the optimized GPG is tested during a real-time single-leg trajectory planning experiment and an unknown terrain recognition simulation of a virtual quadrupedal robot. According to the test results, the GPG shows a remarkable rapidity for processing large-scale data in the gait trajectory planning tasks, and the results can prove it has an application value for quadruped robot control.
Two thrips, Megalurothrips usitatus (Bagnall) and Frankliniella intonsa (Trybom) are major pests of cowpea in South China. To realistically compare the growth, development and reproductive characteristics of these two thrips species, we compared their age-stage, two-sex life tables on cowpea pods under summer and winter natural environmental regimes. The results showed that the total preadult period of M. usitatus was 8.09 days, which was significantly longer than that of F. intonsa (7.06 days), while the adult female longevity of M. usitatus (21.14 days) was significantly shorter than that of F. intonsa (25.77 days). Significant differences were showed in male adult longevity (10.68 days for F. intonsa and 16.95 days for M. usitatus) and the female ratio of offspring (0.67 for F. intonsa and 0.51 for M. usitatus), and the total preadult period of M. usitatus (16.20 days) was significantly longer than that of F. intonsa (13.66 days) in the winter regime. The net reproductive rate (summer: R0 = 85.62, winter: R0 = 105.22), intrinsic rate of increase (summer: r = 0.3020 day−1, winter: r = 0.2115 day−1), finite rate of increase (summer: λ = 1.3526 day−1, winter: λ = 1.2356 day−1) and gross reproduction rate (summer: GRR = 139.34, winter: GRR = 159.88) of F. intonsa were higher than those of M. usitatus (summer: R0 = 82.91, r = 0.2741, λ = 1.3155, GRR = 135.71; winter: R0 = 80.62, r = 0.1672, λ = 1.1820, GRR = 131.26), and the mean generation times (summer: T = 14.73 days, winter: T = 22.01 days) of F. intonsa were significantly shorter than those of M. usitatus (summer: T = 16.11 days, winter: T = 26.25 days). These results may contribute to a better understanding of the bioecology of different thrips species, especially the interspecific competition between two economically important cowpea thrips with the same ecological niche in a changing environment.
As optical parametric chirped pulse amplification has been widely adopted for the generation of extreme intensity laser sources, nonlinear crystals of large aperture are demanded for high-energy amplifiers. Yttrium calcium oxyborate (YCa4O(BO3)3, YCOB) is capable of being grown with apertures exceeding 100 mm, which makes it possible for application in systems of petawatt scale. In this paper, we experimentally demonstrated for the first time to our knowledge, an ultra-broadband non-collinear optical parametric amplifier with YCOB for petawatt-scale compressed pulse generation at 800 nm. Based on the SG-II 5 PW facility, amplified signal energy of approximately 40 J was achieved and pump-to-signal conversion efficiency was up to 42.3%. A gain bandwidth of 87 nm was realized and supported a compressed pulse duration of 22.3 fs. The near-field and wavefront aberration represented excellent characteristics, which were comparable with those achieved in lithium triborate-based amplifiers. These results verified the great potential for YCOB utilization in the future.
To integrate the uneven terrain adaptivity of legged robots and the fast capacity of wheeled robots on even terrains, a four wheel-legged robot is addressed and the cooperative control strategy of wheels and legs based on attitude balance is investigated. Firstly, the kinematics of wheel-legged robot is analyzed, which contains the legged and wheeled motion modal. Secondly, the cooperative control strategy of wheel-legged robot based on attitude balance is proposed. The attitude is calculated by using the quaternion method and complementary filtering, and the attitude stability control of the wheel-legged robot is studied. The trajectory planning of leg motion including walk and trot gait is implemented, and the differential control of wheeled motion is deduced. And then, the cooperative motion control of wheels and legs is achieved by keeping the attitude balance of robot body. Finally, a small prototype is set up to validate the feasibility and effectiveness of proposed method. The experimental results show that the established wheel-legged robot can do walk, trot, and wheel-leg compound motion to overcome many complex terrains and environments.
In this paper, a broadband, low insertion loss, and compact folded substrate integrated waveguide (FSIW) phase shifter is proposed for the first time. By loading the complementary split-ring resonators (CSRRs) on the middle metal layer of the FSIW, a closed-type slow-wave transmission line (TL) is obtained, which can provide a wideband phase shift (39%) compared with the equal-length fast-wave one. The enclosed structure of the CSRR-loaded FSIW prevents the CSRRs from radiation as suffered in the previous reported CSRR-loaded TLs, resulting in a low insertion loss. This feature greatly reduces the amplitude imbalance between the main line and the reference line of the phase shifter. In addition, no transition structure is required between the FSIWs with and without CSRRs for broadband impedance matching, which makes the phase shifter more compact and easier to integrate with other FSIW devices. To validate the performance of the proposed phase shifter and to illustrate its ease integration, a novel FSIW 180° directional coupler that consists of an FSIW 90° coupler and an FSIW 90° phase shifter is designed, fabricated, and measured. The measured results agree well with the simulated data.
In this paper, effects of discharge parameters and modulation frequency on the signal of laser-induced fluorescence measurements of ion velocity distribution functions are investigated in the LIF Test Source. A maximum modulation frequency is found for each given set of parameters, beyond which the signal gradually declines. Meanwhile, this maximum modulation frequency occurred consistently at ~1/10 of the theoretical frequency limit and photon counts received by a photomultiplier tube, which indicates that as modulation frequency and the associated per-pulse-excitation-event count decrease, the transition from the macroscopic statistical signal to the microscopic probabilistic signal is a gradual process.
Emerging functional imaging studies suggest that schizophrenia is associated with aberrant spatiotemporal interaction which may result in aberrant global and local dynamic properties.
Methods
We investigated the dynamic functional connectivity (FC) by using instantaneous phase method based on Hilbert transform to detect abnormal spatiotemporal interaction in schizophrenia. Based on resting-state functional magnetic resonance imaging, two independent datasets were included, with 114 subjects from COBRE [51 schizophrenia patients (SZ) and 63 healthy controls (HCs)] and 96 from OpenfMRI (36 SZ and 60 HCs). Phase differences and instantaneous coupling matrices were firstly calculated at all time points by extracting instantaneous parameters. Global [global synchrony and intertemporal closeness (ITC)] and local dynamic features [strength of FC (sFC) and variability of FC (vFC)] were compared between two groups. Support vector machine (SVM) was used to estimate the ability to discriminate two groups by using all aberrant features.
Results
We found SZ had lower global synchrony and ITC than HCs on both datasets. Furthermore, SZ had a significant decrease in sFC but an increase in vFC, which were mainly located at prefrontal cortex, anterior cingulate cortex, temporal cortex and visual cortex or temporal cortex and hippocampus, forming significant dynamic subnetworks. SVM analysis revealed a high degree of balanced accuracy (85.75%) on the basis of all aberrant dynamic features.
Conclusions
SZ has worse overall spatiotemporal stability and extensive FC subnetwork lesions compared to HCs, which to some extent elucidates the pathophysiological mechanism of schizophrenia, providing insight into time-variation properties of patients with other mental illnesses.
Deep nets have done well with early adopters, but the future will soon depend on crossing the chasm. The goal of this paper is to make deep nets more accessible to a broader audience including people with little or no programming skills, and people with little interest in training new models. A github is provided with simple implementations of image classification, optical character recognition, sentiment analysis, named entity recognition, question answering (QA/SQuAD), machine translation, speech to text (SST), and speech recognition (STT). The emphasis is on instant gratification. Non-programmers should be able to install these programs and use them in 15 minutes or less (per program). Programs are short (10–100 lines each) and readable by users with modest programming skills. Much of the complexity is hidden behind abstractions such as pipelines and auto classes, and pretrained models and datasets provided by hubs: PaddleHub, PaddleNLP, HuggingFaceHub, and Fairseq. Hubs have different priorities than research. Research is training models from corpora and fine-tuning them for tasks. Users are already overwhelmed with an embarrassment of riches (13k models and 1k datasets). Do they want more? We believe the broader market is more interested in inference (how to run pretrained models on novel inputs) and less interested in training (how to create even more models).
This study aimed to explore the impacts of COVID-19 outbreak on mental health status in general population in different affected areas in China.
Methods
This was a comparative study including two groups of participants: (1) general population in an online survey in Ya'an and Jingzhou cities during the COVID-19 outbreak from 10–20 February 2020; and (2) matching general population selected from the mental health survey in Ya'an in 2019 (from January to May 2019). General Health Questionnaire (GHQ-12), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS) were used.
Results
There were 1775 participants (Ya'an in 2019 and 2020: 537 respectively; Jingzhou in 2020: 701). Participants in Ya'an had a significantly higher rate of general health problems (GHQ scores ⩾3) in 2020 (14.7%) than in 2019 (5.2%) (p < 0.001). Compared with Ya'an (8.0%), participants in Jingzhou in 2020 had a significantly higher rate of anxiety (SAS scores ⩾50, 24.1%) (p < 0.001). Participants in Ya'an in 2020 had a significantly higher rate of depression (SDS scores ⩾53, 55.3%) than in Jingzhou (16.3%) (p < 0.001). The risk factors of anxiety symptoms included female, number of family members (⩾6 persons), and frequent outdoor activities. The risk factors of depression symptoms included participants in Ya'an and uptake self-protective measures.
Conclusions
The prevalence of psychological symptoms has increased sharply in general population during the COVID-19 outbreak. People in COVID-19 severely affected areas may have higher scores of GHQ and anxiety symptoms. Culture-specific and individual-based psychosocial interventions should be developed for those in need during the COVID-19 outbreak.
Little is known about poverty trends in people with severe mental illness (SMI) over a long time span, especially under conditions of fast socioeconomic development.
Aims
This study aims to unravel changes in household poverty levels among people with SMI in a fast-changing rural community in China.
Method
Two mental health surveys, using ICD-10, were conducted in the same six townships of Xinjin county, Chengdu, China. A total of 711 and 1042 people with SMI identified in 1994 and 2015, respectively, participated in the study. The Foster-Greer-Thorbecke poverty index was adopted to measure the changes in household poverty. These changes were decomposed into effects of growth and equity using a static decomposition method. Factors associated with household poverty in 1994 and 2015 were examined and compared by regression analyses.
Results
The proportion of poor households, as measured by the headcount ratio, increased significantly from 29.8% in 1994 to 39.5% in 2015. Decomposition showed that poverty in households containing people with SMI had worsened because of a redistribution effect. Factors associated with household poverty had also changed during the study period. The patient's age, ability to work and family size were of paramount significance in 2015.
Conclusions
This study shows that the levels of poverty faced by households containing people with SMI has become more pressing with China's fast socioeconomic development. It calls for further integration of mental health recovery and targeted antipoverty interventions for people with SMI as a development priority.
In a high-level radioactive waste repository, bentonite may react with the alkaline solution produced by cement degradation. In this study, bentonite was mixed with alkaline solution in a closed system and reacted for 3–24 months. Furthermore, swelling tests were conducted on the alkaline-dissolved bentonite immersed in distilled water. The swelling deformation decreased significantly with increases in the concentration of NaOH solution and reaction time, and this was mainly due to montmorillonite dissolution. The fractal e–p relationship (e is the void ratio and p is the vertical pressure) with two calculation coefficients (the swelling coefficient and the fractal dimension) was employed to determine the swelling of alkaline-dissolved bentonite. The fractal dimension increased slightly with increasing reaction time or concentration of NaOH solution, as the dissolution traces caused by the alkaline solution favoured an increase in the irregularity and fractality of the bentonite surface. The swelling coefficient decreased linearly with decreasing montmorillonite content. In addition, the swelling coefficient and the fractal dimension were related exponentially to the reaction time in alkaline solution. A relationship between the swelling of alkaline-dissolved samples and the reaction time was proposed, which might be used to assess the swelling properties of bentonite barriers that would be affected by long-term dissolution of the alkaline solution in a closed repository.
The microbiota–gut–brain axis, especially the microbial tryptophan (Trp) biosynthesis and metabolism pathway (MiTBamp), may play a critical role in the pathogenesis of major depressive disorder (MDD). However, studies on the MiTBamp in MDD are lacking. The aim of the present study was to analyze the gut microbiota composition and the MiTBamp in MDD patients.
Methods
We performed shotgun metagenomic sequencing of stool samples from 26 MDD patients and 29 healthy controls (HCs). In addition to the microbiota community and the MiTBamp analyses, we also built a classification based on the Random Forests (RF) and Boruta algorithm to identify the gut microbiota as biomarkers for MDD.
Results
The Bacteroidetes abundance was strongly reduced whereas that of Actinobacteria was significantly increased in the MDD patients compared with the abundance in the HCs. Most noteworthy, the MDD patients had increased levels of Bifidobacterium, which is commonly used as a probiotic. Four Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs) (K01817, K11358, K01626, K01667) abundances in the MiTBamp were significantly lower in the MDD group. Furthermore, we found a negative correlation between the K01626 abundance and the HAMD scores in the MDD group. Finally, RF classification at the genus level can achieve an area under the receiver operating characteristic curve of 0.890.
Conclusions
The present findings enabled a better understanding of the changes in gut microbiota and the related Trp pathway in MDD. Alterations of the gut microbiota may have the potential as biomarkers for distinguishing MDD patients form HCs.
Iron sulfides have attracted much interests for their potential as anode materials in energy storage devices in view of their low costs, and environmentally benign and high theoretical capacities. Among them, Fe1−xS is relatively rarely investigated. In this work, Fe1−xS@rGO has been synthesized using a facile in situ hydrothermal method. After wrapped by rGO, the morphology of Fe1−xS particles changes from hexagonal flakes to irregular particles with much smaller sizes. As the anode material for lithium ion batteries, Fe1−xS@rGO exhibits excellent lithium storage ability. It can deliver an initial discharge capacity of 1575.5 mA h/g in the potential window of 0.005–3 V, and a reversible capacity of 907.8 mA h/g can be maintained after 200 cycles at 100 mA/g. Its improved electrochemical performance can be attributed to the effect of enhanced contact area and shortened Li+ ion transport distance because of rGO’s contribution.
Swelling deformation tests of Kunigel bentonite and its sand mixtures were performed in distilled water and NaCl solution. The salinity of NaCl solution has a significant impact on the swelling properties of bentonite, but not on its surface structure. The surface structure was characterized using the fractal dimension Ds. Based on the fractal dimension, a unique curve of the em–pe relationship (em is the void ratio of montmorillonite and pe is the effective stress) at full saturation was introduced to express the swelling deformation of bentonite–sand mixtures. In mixtures with a large bentonite content, the swelling deformation always followed the em–pe relationship. In mixtures with a small bentonite content, when the effective stress reached a threshold, the void ratio of montmorillonite em deviated from the unique em–pe curve due to the appearance of a sand skeleton. The threshold of vertical pressure for mixtures in different solutions and the maximum swelling strains were estimated using the em–pe relationship. The good agreement between estimates and experimental data suggest that the em–pe relationship might be an alternative method for predicting the swelling deformation of bentonite–sand mixtures in salt solution.