We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Background: Intracranial extension of temporomandibular joint (TMJ) lesions is uncommon and may lead to radiological misinterpretation. This review aimed to identify clinical and radiological features of these lesions and whether radiological misinterpretation contributed to delayed or incorrect intervention. Methods: A comprehensive search of MEDLINE, SCOPUS, and Embase identified 2,256 records. Studies with clinical and imaging details of TMJ lesions extending intracranially were included. Reviews and non-English studies were excluded. After screening, 113 studies involving 132 patients were included. Results: Patients had an average symptom duration of 32 months until diagnosis (47% female, mean age 50±15 years). The most common diagnoses were pigmented villonodular synovitis/tenosynovial giant cell tumor (46%) and synovial chondromatosis (24%). Neurological symptoms were reported in 48% of cases, most frequently hearing loss (35%). Diagnostic accuracy increased from 38% to 62% when both CT and MRI were used. Most lesions were non-enhancing on CT (85%) and MRI (74%), and demonstrated no edema (96%). In one case, a ganglion cyst was misdiagnosed as a cystic brain tumor, leading to neurosurgical resection. Conclusions: TMJ lesions extending intracranially have neurological symptoms in less than half of cases and demonstrate no enhancement or edema. Familiarity with these characteristics is essential to avoiding misdiagnoses and ensuring timely management.
This paper considers the guidance issue for attackers against aircraft with active defense in a two-on-two engagement, which includes an attacker, a protector, a defender and a target. A cooperative line-of-sight guidance scheme with prescribed performance and input saturation is proposed utilising the sliding mode control and line-of-sight guidance theories, which guarantees that the attacker is able to capture the target with the assistance of the protector remaining on the line-of-sight between the defender and the attacker in order to intercept the defender. A fixed-time prescribed performance function and first-order anti-saturation auxiliary variable are designed in the game guidance strategy to constrain the overshoot of the guidance variable and satisfy the requirement of an overload manoeuver. The proposed guidance strategy alleviates the influence of external disturbance by implementing a fixed-time observer and the chattering phenomenon caused by the sign function. Finally, nonlinear numerical simulations verify the cooperative guidance strategies.
With the development of overall design methodologies for hypersonic vehicles and their propulsion systems, nozzles should expand airflow in a short length and provide sufficient thrust. Therefore, the large expansion ratio single expansion ramp nozzle (LSERN) is widely used. The form of the overexpanded flow field in the nozzle is complex, under the conditions of nozzle start-up, low speed and low nozzle pressure ratio (NPR), thereby negatively influencing the entire propulsion system. Thus, the nozzle flow separation pattern and the key factors affecting the flow separation pattern also deserve considerable attention. In this study, the design of SERN is completed using the cubic curve design method, and the model is numerically simulated for specific operating conditions to study the flow separation patterns and the transition processes of different patterns. Furthermore, the key factors affecting the various flow separation patterns in the nozzle are investigated in detail. Results show that the LSERN in different NPRs appeared in two types of restricted shock separation (RSS) pattern and free shock separation (FSS) pattern, as well as their corresponding flow separation pattern transition processes. The initial expansion angle and the nozzle length affect the range of NPRs maintained by the FSS pattern. The initial expansion angle affects the pattern of flow separation, whereas the nozzle length remarkably influences the critical NPR during transition.
Competition among the two-plasmon decay (TPD) of backscattered light of stimulated Raman scattering (SRS), filamentation of the electron-plasma wave (EPW) and forward side SRS is investigated by two-dimensional particle-in-cell simulations. Our previous work [K. Q. Pan et al., Nucl. Fusion 58, 096035 (2018)] showed that in a plasma with the density near 1/10 of the critical density, the backscattered light would excite the TPD, which results in suppression of the backward SRS. However, this work further shows that when the laser intensity is so high ($>{10}^{16}$ W/cm2) that the backward SRS cannot be totally suppressed, filamentation of the EPW and forward side SRS will be excited. Then the TPD of the backscattered light only occurs in the early stage and is suppressed in the latter stage. Electron distribution functions further show that trapped-particle-modulation instability should be responsible for filamentation of the EPW. This research can promote the understanding of hot-electron generation and SRS saturation in inertial confinement fusion experiments.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
The radio signal transmitted by the Mars Express (MEX) spacecraft was observed regularly between the years 2013–2020 at X-band (8.42 GHz) using the European Very Long Baseline Interferometry (EVN) network and University of Tasmania’s telescopes. We present a method to describe the solar wind parameters by quantifying the effects of plasma on our radio signal. In doing so, we identify all the uncompensated effects on the radio signal and see which coronal processes drive them. From a technical standpoint, quantifying the effect of the plasma on the radio signal helps phase referencing for precision spacecraft tracking. The phase fluctuation of the signal was determined for Mars’ orbit for solar elongation angles from 0 to 180 deg. The calculated phase residuals allow determination of the phase power spectrum. The total electron content of the solar plasma along the line of sight is calculated by removing effects from mechanical and ionospheric noises. The spectral index was determined as $-2.43 \pm 0.11$ which is in agreement with Kolmogorov’s turbulence. The theoretical models are consistent with observations at lower solar elongations however at higher solar elongation ($>$160 deg) we see the observed values to be higher. This can be caused when the uplink and downlink signals are positively correlated as a result of passing through identical plasma sheets.
Accumulating evidence suggests that positive and negative emotions, as well as emotion regulation, play key roles in human health and disease. Recent work has shown the gut microbiome is important in modulating mental and physical health through the gut–brain axis. Yet, its association with emotions and emotion regulation are understudied. Here we examined whether positive and negative emotions, as well as two emotion regulation strategies (i.e. cognitive reappraisal and suppression), were associated with the gut microbiome composition and functional pathways in healthy women.
Methods
Participants were from the Mind-Body Study (N = 206, mean age = 61), a sub-study of the Nurses' Health Study II cohort. In 2013, participants completed measures of emotion-related factors. Two pairs of stool samples were collected, 6 months apart, 3 months after emotion-related factors measures were completed. Analyses examined associations of emotion-related factors with gut microbial diversity, overall microbiome structure, and specific species/pathways and adjusted for relevant covariates.
Results
Alpha diversity was negatively associated with suppression. In multivariate analysis, positive emotions were inversely associated with the relative abundance of Firmicutes bacterium CAG 94 and Ruminococcaceae bacterium D16, while negative emotions were directly correlated with the relative abundance of these same species. At the metabolic pathway level, negative emotions were inversely related to the biosynthesis of pantothenate, coenzyme A, and adenosine.
Conclusions
These findings offer human evidence supporting linkages of emotions and related regulatory processes with the gut microbiome and highlight the importance of incorporating the gut microbiome in our understanding of emotion-related factors and their associations with physical health.
We analyzed the 3 mm wavelength spectral line survey of 408 clumps from the APEX telescope large area survey of the Galaxy, focusing on the methanol maser transitions. The main goals of this study are (1) to search for new methanol masers, (2) to statistically study the relationship between class I masers and shock tracers, (3) to study the properties between methanol masers and their host clumps, also as a function of their evolutionary stages and, (4) to better constrain the physical conditions using multiple co-spatial line pairs.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
Axisymmetric standing waves occur across a wide range of free surface flows. When these waves reach a critical height (steepness), wave breaking and jet formation occur. For travelling surface gravity waves, wave breaking is generally considered to limit wave height and reversible wave motion. In the ocean, the behaviour of directionally spread waves lies between the limits of purely travelling (two dimensions) and axisymmetric (three dimensions). Hence, understanding wave breaking and jet formation on axisymmetric surface gravity waves is an important step in understanding extreme and breaking waves in the ocean. We examine an example of axisymmetric wave breaking and jet formation colloquially known as the ‘spike wave’, created in the FloWave circular wave tank at the University of Edinburgh, UK. We generate this spike wave with maximum crest amplitudes of 0.15–6.0 m (0.024–0.98 when made non-dimensional by characteristic radius), with wave breaking occurring for crest amplitudes greater than 1.0 m (0.16 non-dimensionalised). Unlike two-dimensional travelling waves, wave breaking does not limit maximum crest amplitude, and our measurements approximately follow the jet height scaling proposed by Ghabache et al. (J. Fluid Mech., vol. 761, 2014, pp. 206–219) for cavity collapse. The spike wave is predominantly created by linear dispersive focusing. A trough forms, then collapses producing a jet, which is sensitive to the trough's shape. The evolution of the jets that form in our experiments is predicted well by the hyperbolic jet model proposed by Longuet–Higgins (J. Fluid Mech., vol. 127, 1983, pp. 103–121), previously applied to jets forming on bubbles.
The Real Time Mesoscale Analysis (RTMA), a two-dimensional variational analysis algorithm, is used to provide hourly analyses of surface sensible weather elements for situational awareness at spatial resolutions of 3 km over Alaska. In this work we focus on the analysis of horizontal visibility in Alaska, which is a region prone to weather related aviation accidents that are in part due to a relatively sparse observation network. In this study we evaluate the impact of assimilating estimates of horizontal visibility derived from a novel network of web cameras in Alaska with the RTMA. Results suggest that the web camera-derived estimates of visibility can capture low visibility conditions and have the potential to improve the RTMA visibility analysis under conditions of low instrument flight rules and instrument flight rules.
This study was a retrospective multicentre cohort study of patients with coronavirus disease 2019 (COVID-19) diagnosed at 24 hospitals in Jiangsu province, China as of 15 March 2020. The primary outcome was the occurrence of acute respiratory failure during hospital stay. Of 625 patients, 56 (9%) had respiratory failure. Some selected demographic, epidemiologic, clinical and laboratory features as well as radiologic features at admission and treatment during hospitalisation were significantly different in patients with and without respiratory failure. The multivariate logistic analysis indicated that age (in years) (odds ratio [OR], 1.07; 95% confidence interval [CI]: 1.03–1.10; P = 0.0002), respiratory rate (breaths/minute) (OR, 1.23; 95% CI: 1.08–1.40; P = 0.0020), lymphocyte count (109/l) (OR, 0.18; 95% CI: 0.05–0.69; P = 0.0157) and pulmonary opacity score (per 5%) (OR, 1.38; 95% CI: 1.19–1.61; P < 0.0001) at admission were associated with the occurrence of respiratory failure. Older age, increased respiratory rate, decreased lymphocyte count and greater pulmonary opacity score at admission were independent risk factors of respiratory failure in patients with COVID-19. Patients having these risk factors need to be intensively managed during hospitalisation.
We study singular jets from the collapse of drop-impact craters, when the drop and pool are of different immiscible liquids. The fastest jets emerge from a dimple at the bottom of the rebounding crater, when no bubble is pinched off. The parameter space is considerably more complex than for identical liquids, revealing intricate compound-dimple shapes. In contrast to the universal capillary–inertial drop pinch-off regime, where the neck radius scales as $R\sim t^{2/3}$, for a purely inertial air dimple the collapse has $R \sim t^{1/2}$. The bottom dimple dynamics is not self-similar but possesses memory effects, being sensitive to initial and boundary conditions. Sequence of capillary waves can therefore mould the air dimple into different collapse shapes, such as bamboo-like and telescopic forms. The finest jets are only $12\ \mathrm {\mu }\textrm {m}$ in diameter and the normalized jetting speeds are up to one order of magnitude larger than for jets from bursting bubbles. We study the cross-over between the two power laws approaching the singularity. The singular jets show the earliest cross-over into the inertial regime. The fastest jets can pinch off a toroidal micro-bubble from the cusp at the base of the jet.
To improve the endurance performance of long-endurance Unmanned Aerial Vehicles (UAVs), a smart morphing method to adjust the UAV and flight mode continuously during flight is proposed. Using this method as a starting point, a smart morphing long-endurance UAV design is conducted and the resulting improvement in the endurance performance studied. Firstly, the initial overall design of the smart morphing long-endurance UAV is carried out, then the morphing form is designed and various control parameters are selected. Secondly, based on multi-agent theory, an architecture for the smart morphing control system is built and the workflow of the smart morphing control system is planned. The morphing decision method is designed in detail based on the particle swarm optimisation algorithm. Finally, a simulation of the smart morphing approach in the climb and cruise stages is carried out to quantitatively verify the improvement in the endurance performance. The simulation results show that the smart morphing method can improve the cruise time by 4.1% with the same fuel consumption.
In this paper, the generation of relativistic electron mirrors (REM) and the reflection of an ultra-short laser off the mirrors are discussed, applying two-dimension particle-in-cell simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapid expansion. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads to the resonance between laser and REM. The reflected radiation near this interval and corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, a certain part of the reflected field could be selectively amplified or depressed, leading to the selective adjustment of the corresponding spectra.
Previous work led to the proposal that the precision feeding of a high-concentrate diet may represent a potential method with which to enhance feed efficiency (FE) when rearing dairy heifers. However, the physiological and metabolic mechanisms underlying this approach remain unclear. This study used metabolomics analysis to investigate the changes in plasma metabolites of heifers precision-fed diets containing a wide range of forage to concentrate ratios. Twenty-four half-sib Holstein heifers, with a similar body condition, were randomly assigned into four groups and precision fed with diets containing different proportions of concentrate (20%, 40%, 60% and 80% based on DM). After 28 days of feeding, blood samples were collected 6 h after morning feeding and gas chromatography time-of-flight/MS was used to analyze the plasma samples. Parameters of oxidative status were also determined in the plasma. The FE (after being corrected for gut fill) increased linearly (P < 0.01) with increasing level of dietary concentrate. Significant changes were identified for 38 different metabolites in the plasma of heifers fed different dietary forage to concentrate ratios. The main pathways showing alterations were clustered into those relating to carbohydrate and amino acid metabolism; all of which have been previously associated with FE changes in ruminants. Heifers fed with a high-concentrate diet had higher (P < 0.01) plasma total antioxidant capacity and superoxide dismutase but lower (P ≤ 0.02) hydroxyl radical and hydrogen peroxide than heifers fed with a low-concentrate diet, which might indicate a lower plasma oxidative status in the heifers fed a high-concentrate diet. Thus, heifers fed with a high-concentrate diet had higher FE and antioxidant capacity but a lower plasma oxidative status as well as changed carbohydrate and amino acid metabolism. Our findings provide a better understanding of how forage to concentrate ratios affect FE and metabolism in the precision-fed growing heifers.
Post-stroke depression (PSD) is the most common psychiatric complication facing stroke survivors and has been associated with increased distress, physical disability, poor rehabilitation, and suicidal ideation. However, the pathophysiological mechanisms underlying PSD remain unknown, and no objective laboratory-based test is available to aid PSD diagnosis or monitor progression.
Methods:
Here, an isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic approach was performed to identify differentially expressed proteins in plasma samples obtained from PSD, stroke, and healthy control subjects.
Results:
The significantly differentiated proteins were primarily involved in lipid metabolism and immunoregulation. Six proteins associated with these processes – apolipoprotein A-IV (ApoA-IV), apolipoprotein C-II (ApoC-II), C-reactive protein (CRP), gelsolin, haptoglobin, and leucine-rich alpha-2-glycoprotein (LRG) – were selected for Western blotting validation. ApoA-IV expression was significantly upregulated in PSD as compared to stroke subjects. ApoC-II, LRG, and CRP expression were significantly downregulated in both PSD and HC subjects relative to stroke subjects. Gelsolin and haptoglobin expression were significantly dysregulated across all three groups with the following expression profiles: gelsolin, healthy control > PSD > stroke subjects; haptoglobin, stroke > PSD > healthy control.
Conclusions:
Early perturbation of lipid metabolism and immunoregulation may be involved in the pathophysiology of PSD. The combination of increased gelsolin levels accompanied by decreased haptoglobin levels shows promise as a plasma-based diagnostic biomarker panel for detecting increased PSD risk in post-stroke patients.
We hypothesized an increase in dorsolateral prefrontal cortex (DLPFC) glutamate levels would occur after three weeks of repetitve transcranial magnetic stimulation (rTMS) treatment and a decrease in major depressive disorder (MDD) symptoms.
Method:
We report six cases (four females) 15–21 years of age with treatment-resistant MDD. Participants had a mean age of 18.7 years and a mean IQ of 102.3. Short echo proton magnetic resonance spectroscopy (H-MRS) was used to quantify glutamate levels in the left DLPFC (4.5cc) before and after rTMS treatment. rTMS was localized to the left DLPFC and applied for 15 consecutive weekdays. Treatment response was defined as a greater than 50% reduction in Hamilton Depression Rating Scale scores (Ham-D).1H-MRS data was analyzed with LCModel to determine glutamate concentration.
Results:
Following rTMS, treatment responders (N=4) showed an increase (relative to baseline) in left DLPFC glutamate levels (11%), which corresponded to an improvement in depressive symptom severity (68% Ham-D score reduction). Treatment non-responders (N=2) had elevated baseline glutamate levels compared to responders in that same region, which decreased with rTMS (−10%). Procedures were generally well tolerated with no adverse events.
Conclusions:
rTMS is feasible and possibly efficacious in adolescents with MDD. In responders, rTMS may act by Induced elevations in elevating DFPLC glutamate levels in the left DLPFC, thereby leading to symptom improvement. Transcranial Magnetic Stimulation for Adolescent Depression (TMSAD)
It is known that Sexual Dysfunction (SD) is higher in patient with depression than in the general population. Though antidepressant seems to worsen the situation, there are also indications that the gender may play a role on it.
Objective:
Evaluate the gender effect of sexual function among unmedicated MDD, MDD receiving antidepressant, and healthy controls.
Methods:
The sample was formed by male and female Taiwanese outpatients in three age and sex matched groups, with sixty nine participants per group: unmedicated MDD, MDD receiving antidepressant, and healthy controls. the diagnoses of depressions were performed according DSM-IV and Taiwanese Depression Questionnaire. SD was evaluated with the Chinese version of the Changes in Sexual Functioning Questionnaire. Finally, the data was analyzed using SPSS software v17. Mixed designed ANOVA was used.
Results:
There are significant differences between males and females CSFQ results (sex main effect F = 82.44, p < 0.001) and between groups (group main effect F = 3.48, p = 0.034). Additionally, the 2-way interaction between sex and group was also significant (F = 3.40, p = 0.036). Simple main effect analysis shows differences among male participants, between healthy and medicated males (F = 11.41, p = 0.002), but not in female (F = 1.58, p = 0.21). However the statistics weren’t different between females groups, the medicated expresses better results (similar to healthy group) than the unmedicated one.
Conclusions:
SD is different between genders in each of the groups. Antidepressant seems to increase SD in man, while improves sexual satisfaction/function among depressive woman. We speculate that psychological improvement after treatment may have different impact between genders on sexual satisfaction.
The presence of comorbid anxiety disorders (AD) and bipolar II disorders (BP-II) compounds disability complicates treatment, worsens prognosis, and has been understudied. The genes involved in metabolizing dopamine and encoding dopamine receptors, such as aldehyde dehydrogenase 2 (ALDH2) and dopamine D2 receptor (DRD2) genes, may be important to the pathogenesis of BP-II comorbid with AD. We aimed to clarify ALDH2 and DRD2 genes for predisposition to BP-II comorbid with and without AD. The sample consisted of 335 subjects BP-II without AD, 127 subjects BP-II with AD and 348 healthy subjects as normal control. The genotypes of the ALDH2 and DRD2 Taq-IA polymorphisms were determined using polymerase chain reactions plus restriction fragment length polymorphism analysis. Logistic regression analysis showed a statistically significant association between DRD2 Taq-I A1/A2 genotype and BP-II with AD (OR = 2.231, P = 0.021). Moreover, a significant interaction of the DRD2 Taq-I A1/A1 and the ALDH2*1*1 genotypes in BP-II without AD was revealed (OR = 5.623, P = 0.001) compared with normal control. Our findings support the hypothesis that a unique genetic distinction between BP-II with and without AD, and suggest a novel association between DRD2 Taq-I A1/A2 genotype and BP-II with AD. Our study also provides further evidence that the ALDH2 and DRD2 genes interact in BP-II, particularly BP-II without AD.