We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Metabolic enzymes are the catalysts that drive the biochemical reactions essential for sustaining life. Many of these enzymes are tightly regulated by feedback mechanisms. To fully understand their roles and modulation, it is crucial to investigate the relationship between their structure, catalytic mechanism, and function. In this perspective, by using three examples from our studies on Mycobacterium tuberculosis (Mtb) isocitrate lyase and related proteins, we highlight how an integrated approach combining structural, activity, and biophysical data provides insights into their biological functions. These examples underscore the importance of employing fast-fail experiments at the early stages of a research project, emphasise the value of complementary techniques in validating findings, and demonstrate how in vitro data combined with chemical, biochemical, and physiological knowledge can lead to a broader understanding of metabolic adaptations in pathogenic bacteria. Finally, we address the unexplored questions in Mtb metabolism and discuss how we expand our approach to include microbiological and bioanalytical techniques to further our understanding. Such an integrated and interdisciplinary strategy has the potential to uncover novel regulatory mechanisms and identify new therapeutic opportunities for the eradication of tuberculosis. The approach can also be broadly applied to investigate other biochemical networks and complex biological systems.
Adolescence is a period marked by highest vulnerability to the onset of depression, with profound implications for adult health. Neuroimaging studies have revealed considerable atrophy in brain structure in these patients with depression. Of particular importance are regions responsible for cognitive control, reward, and self-referential processing. However, the causal structural networks underpinning brain region atrophies in adolescents with depression remain unclear.
Objectives
This study aimed to investigate the temporal course and causal relationships of gray matter atrophy within the brains of adolescents with depression.
Methods
We analyzed T1-weighted structural images using voxel-based morphometry in first-episode adolescent patients with depression (n=80, 22 males; age = 15.57±1.78) and age, gender matched healthy controls (n=82, 25 males; age = 16.11±2.76) to identify the disease stage-specific gray matter abnormalities. Then, with granger causality analysis, we arranged the patients’ illness duration chronologically to construct the causal structural covariance networks that investigated the causal relationships of those atypical structures.
Results
Compared to controls, smaller volumes in ventral medial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), middle cingulate cortex (MCC) and insula areas were identified in patients with less than 1 year illness duration, and further progressed to the subgenual ACC, regions of default, frontoparietal networks in longer duration. Causal network results revealed that dACC, vmPFC, MCC and insula were prominent nodes projecting exerted positive causal effects to regions of the default mode and frontoparietal networks. The dACC, vmPFC and insula also had positive projections to the reward network, which included mainly the thalamus, caudate and putamen, while MCC also exerted a positive causal effect on the insula and thalamus.
Conclusions
These findings revealed the progression of structural atrophy in adolescent patients with depression and demonstrated the causal relationships between regions involving cognitive control, reward and self-referential processes.
The occurrence of depression in adolescence, a critical period of brain development, linked with neuroanatomical and cognitive abnormalities. Neuroimaging studies have identified hippocampal abnormalities in those of adolescent patients. However, few studies have investigated the atypically developmental trends in hippocampal subfields in adolescents with depression and their relationships with cognitive dysfunctions.
Objectives
To explore the structural abnormalities of hippocampal subfields in patients with youth depression and examine how these abnormalities associated with cognitive deficits.
Methods
We included a sample of 79 first-episode depressive patients (17 males, age = 15.54±1.83) and 71 healthy controls (23 males, age = 16.18±2.85). The severity of these adolescent patients was assessed by depression scale, suicidal risk and self-harm behavior. Nine cognitive tasks were used to evaluate memory, cognitive control and attention abilities for all participants. Bilateral hippocampus were segmented into 12 subfields with T1 and T2 weighted images using Freesurfer v6.0. A mixed analysis of variance was performed to assess the differences in subfields volumes between all patients and controls, and between patients with mild and severe depression. Finally, LASSO regression was conducted to explore the associations between hippocampal subfields and cognitive abnormalities in patients.
Results
We found significant subfields atrophy in the CA1, CA2/3, CA4, dentate gyrus, hippocampal fissure, hippocampal tail and molecular layer subfields in patients. For those patients with severe depression, hippocampal subfields showed greater extensive atrophy than those in mild, particularly in CA1-4 subfields extending towards the subiculum. These results were similar across various severity assessments. Regression indicated that hippocampal subfields abnormalities had the strongest associations with memory dysfunction, and relatively week associations with cognitive control and attention. Notably, CA4 and dentate gyrus had the highest weights in the regression model.
Conclusions
As depressive severity increases, hippocampal subfield atrophy tends to spread from CA regions to surrounding areas, and primarily affects memory function in patients with youth depression. These results suggest hippocampus might be markers in progression of adolescent depression, offering new directions for early clinical intervention.
Redox and acid-base reactions play important roles in the fate of metal contaminants in soils and sediments. The presence of significant amounts of Cr, Pb and other toxic heavy metals in contaminated soils and sediments is of great environmental concern. Oxidation states and dissolution characteristics of the heavy metals can exert negative effects on the natural environment. Atomic force microscopy (AFM) was used to follow the changes in morphology and structure of reaction products of Cr and Pb formed on mineral surfaces. Nitrate salts of Cr(III) and Pb(II) were used to replace the native exchangeable cations on muscovite and smectite surfaces and the metal-mineral systems were then reacted at different pH's and redox conditions.
For Pb, aggregate morphological forms were found at pH 6.1 and 12.4. At pH 6.1, the mean roughness value was 0.70 nm, and at pH 12.4 it was 5.30 nm. The fractal dimensions were 2.03 at pH 6.1 and 2.05 at pH 12.4. For Cr(III), both layered and aggregate morphological forms were found at pH 6.8 and 10.8. The mean roughness values were 0.90 nm at pH 6.8 and 4.3 nm at pH 10.8. Fractal dimensions for both were 2.00. The effect of redox conditions on morphological characteristics was studied on a smectite substrate. The reduced clays were more compacted than oxidized ones and the reduced clay could reduce Cr(VI) to Cr(III), forming new minerals on the surfaces.
A geochemical equilibrium model, MINTEQA2, was used to simulate the experimental conditions and predict possible reaction products. Simulation results agreed well with data from experiments, providing evidence that modeling can provide a useful “reality check” for such studies. Together, MINTEQA2 and AFM can provide important information for evaluating the morphologies and chemical reactivities of metal reaction products formed on phyllosilicate surfaces under varying environmental conditions.
Redox properties of iron-bearing mineral surfaces may play an important role in controlling the transport and transformation of pollutants into ground waters. Suspensions of seven iron-bearing minerals were reacted with pH and redox indicators under anaerobic conditions at the pH of the natural suspension. The responses of the indicators to the mineral surfaces were monitored by UV-visible spectroscopy using a scattered transmission technique. The Hammett surface acidity function (Hs) and the surface redox potential (Ehs) of these iron-bearing minerals were measured. These measured values were used to calculate Eh values for the seven minerals: goethite = +293 mV; chlorite = +290 mV; hematite = +290 mV; almandite = +282 mV; ferruginous smectite = +275 mV; pyrite = +235 mV; and Na-vermiculite = +223 mV. Calculated surface redox potentials of minerals are different from their potentials measured by platinum electrode in bulk suspensions. UV-visible spectroscopy provides a quick and non-destructive way of monitoring organic probe response at the mineral surface.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
This paper investigates the rational and emotional functions of symbols in organizational change and how collective sensemaking and acceptance of organizational changes are facilitated by the emotional functioning of executive symbolism. Evidence from archived data, news reports, reviews, and case studies are used to support our theoretical analysis. Our opinion is that the CEO can incorporate symbols into not only the rational calculation process to convey the benefits and losses of organizational changes but also the emotional identification process to create new emotional connections and reduce the resistance of the members to organizational changes. We describe why and when the implementation of symbolism will gain the acceptance of members toward organizational change and explain the scenarios that apply for the two functions.
We examined the accuracy of International Classification of Disease 10th iteration (ICD-10) diagnosis codes within Canadian administrative data in identifying cerebral venous thrombosis (CVT). Of 289 confirmed cases of CVT admitted to our comprehensive stroke center between 2008 and 2018, 239/289 were new diagnoses and 204/239 were acute events with only 75/204 representing symptomatic CVTs not provoked by trauma or structural processes. Using ICD-10 codes in any position, sensitivity was 39.1% and positive predictive value was 94.2% for patients with a current or history of CVT and 84.0% and 52.5% for acute and symptomatic CVTs not provoked by trauma or structural processes.
The aim of this study was to explore the frequency and distribution of gene mutations that are related to isoniazid (INH) and rifampin (RIF)-resistance in the strains of the multidrug-resistant tuberculosis (MDR-TB) Mycobacterium tuberculosis (M.tb) in Beijing, China. In this retrospective study, the genotypes of 173 MDR-TB strains were analysed by spoligotyping. The katG, inhA genes and the promoter region of inhA, in which genetic mutations confer INH resistance; and the rpoB gene, in which genetic mutations confer RIF resistance, were sequenced. The percentage of resistance-associated nucleotide alterations among the strains of different genotypes was also analysed. In total, 90.8% (157/173) of the MDR strains belonged to the Beijing genotype. Population characteristics were not significantly different among the strains of different genotypes. In total, 50.3% (87/173) strains had mutations at codon S315T of katG; 16.8% (29/173) of strains had mutations in the inhA promoter region; of them, 5.5% (15/173) had point mutations at −15 base (C→T) of the inhA promoter region. In total, 86.7% (150/173) strains had mutations at rpoB gene; of them, 40% (69/173) strains had mutations at codon S531L of rpoB. The frequency of mutations was not significantly higher in Beijing genotypic MDR strains than in non-Beijing genotypes. Beijing genotypic MDR-TB strains were spreading in Beijing and present a major challenge to TB control in this region. A high prevalence of katG Ser315Thr, inhA promoter region (−15C→T) and rpoB (S531L) mutations was observed. Molecular diagnostics based on gene mutations was a useful method for rapid detection of MDR-TB in Beijing, China.
An acute gastroenteritis (AGE) outbreak caused by a norovirus occurred at a hospital in Shanghai, China, was studied for molecular epidemiology, host susceptibility and serological roles. Rectal and environmental swabs, paired serum samples and saliva specimens were collected. Pathogens were detected by real-time polymerase chain reaction and DNA sequencing. Histo-blood group antigens (HBGA) phenotypes of saliva samples and their binding to norovirus protruding proteins were determined by enzyme-linked immunosorbent assay. The HBGA-binding interfaces and the surrounding region were analysed by the MegAlign program of DNAstar 7.1. Twenty-seven individuals in two care units were attacked with AGE at attack rates of 9.02 and 11.68%. Eighteen (78.2%) symptomatic and five (38.4%) asymptomatic individuals were GII.6/b norovirus positive. Saliva-based HBGA phenotyping showed that all symptomatic and asymptomatic cases belonged to A, B, AB or O secretors. Only four (16.7%) out of the 24 tested serum samples showed low blockade activity against HBGA-norovirus binding at the acute phase, whereas 11 (45.8%) samples at the convalescence stage showed seroconversion of such blockade. Specific blockade antibody in the population played an essential role in this norovirus epidemic. A wide HBGA-binding spectrum of GII.6 supports a need for continuous health attention and surveillance in different settings.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
In this paper, the generation of relativistic electron mirrors (REM) and the reflection of an ultra-short laser off the mirrors are discussed, applying two-dimension particle-in-cell simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapid expansion. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads to the resonance between laser and REM. The reflected radiation near this interval and corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, a certain part of the reflected field could be selectively amplified or depressed, leading to the selective adjustment of the corresponding spectra.
Antibiotics are designed to affect gut microbiota and subsequently gut homeostasis. However, limited information exists about short- and long-term effects of early antibiotic intervention (EAI) on gut homeostasis (especially for the small intestine) of pigs following antibiotic withdrawal. We investigated the impact of EAI on specific bacterial communities, microbial metabolites and mucosal immune parameters in the small intestine of later-growth-stage pigs fed with diets differing in CP levels. Eighteen litters of piglets were fed creep feed with or without antibiotics from day 7 to day 42. At day 42, pigs within each group were offered a normal- or low-CP diet. Five pigs per group were slaughtered at days 77 and 120. At day 77, EAI increased Enterobacteriaceae counts in the jejunum and ileum and decreased Bifidobacterium counts in the jejunum and ileum (P < 0.05). Moreover, tryptamine, putrescine, secretory immunoglobulin (Ig) A and IgG concentrations in the ileum and interleukin-10 (IL-10) mRNA and protein levels in the jejunum and ileum were decreased in pigs with EAI (P < 0.05). At day 120, EAI only suppressed Clostridium cluster XIVa counts in the jejunum and ileum (P < 0.05). These results suggest that EAI has a short-term effect on specific bacterial communities, amino acid decarboxylation and mucosal immune parameters in the small intestine (particularly in the ileum). At days 77 and 120, feeding a low-CP diet affected Bifidobacterium, Clostridium cluster IV, Clostridium cluster XIVa and Enterobacteriaceae counts in the jejunum or ileum (P < 0.05). Moreover, feeding a low-CP diet increased the concentrations of Igs in the jejunum and decreased pro-inflammatory cytokines levels in the jejunum and ileum (P < 0.05). At day 120, feeding a low-CP diet increased short-chain fatty acid concentrations, reduced ammonia and spermidine concentrations and up-regulated genes related to barrier function in the jejunum and ileum (P < 0.05). These results suggest that feeding a low-CP diet changes specific bacterial communities and intestinal metabolite concentrations and modifies mucosal immune parameters. These findings contribute to our understanding on the duration of the impact of EAI on gut homeostasis and may provide basis data for nutritional modification in young pigs after antibiotic treatment.
Fluid motion has two well-known fundamental processes: the vector transverse process characterized by vorticity, and the scalar longitudinal process consisting of a sound mode and an entropy mode, characterized by dilatation and thermodynamic variables. The existing theories for the sound mode involve the multi-variable issue and its associated difficulty of source identification. In this paper, we define the source of sound inside the fluid by the objective causality inherent in dynamic equations relevant to a longitudinal process, which naturally favours the material time-rate operator $D/Dt$ rather than the local time-rate operator $\unicode[STIX]{x2202}/\unicode[STIX]{x2202}t$, and describes the sound mode by inhomogeneous advective wave equations. The sources of sound physical production inside the fluid are then examined at two levels. For the conventional formulation in terms of thermodynamic variables at the first level, we show that the universal kinematic source can be condensed to a scalar invariant of the surface deformation tensor. Further, in the formulation in terms of dilatation at the second level, we find that the sound mode in viscous and heat-conducting flow has sources from rich nonlinear couplings of vorticity, entropy and surface deformation, which cannot be disclosed at the first level. Preliminary numerical demonstration of the theoretical findings is made for two typical compressible flows, i.e. the interaction of two corotating Gaussian vortices and the unsteady type IV shock/shock interaction. The results obtained in this study provide a new theoretical basis for, and physical insight into, understanding various nonlinear longitudinal processes and the interactions therein.
At present, analysis of diet and bladder cancer (BC) is mostly based on the intake of individual foods. The examination of food combinations provides a scope to deal with the complexity and unpredictability of the diet and aims to overcome the limitations of the study of nutrients and foods in isolation. This article aims to demonstrate the usability of supervised data mining methods to extract the food groups related to BC. In order to derive key food groups associated with BC risk, we applied the data mining technique C5.0 with 10-fold cross-validation in the BLadder cancer Epidemiology and Nutritional Determinants study, including data from eighteen case–control and one nested case–cohort study, compromising 8320 BC cases out of 31 551 participants. Dietary data, on the eleven main food groups of the Eurocode 2 Core classification codebook, and relevant non-diet data (i.e. sex, age and smoking status) were available. Primarily, five key food groups were extracted; in order of importance, beverages (non-milk); grains and grain products; vegetables and vegetable products; fats, oils and their products; meats and meat products were associated with BC risk. Since these food groups are corresponded with previously proposed BC-related dietary factors, data mining seems to be a promising technique in the field of nutritional epidemiology and deserves further examination.
Previously the GABA(A) receptor beta-2 subunit gene GABRB2 was found to be associated with schizophrenia (SCZ). for SNPs and haplotypes in GRBRB2, the associations with bipolar disorder (BPD), the functional consequences on GABRB2 expression and their relationship to demographic and clinical characteristics in BPD and SCZ remain to be elucidated.
Method:
Case-control analysis was performed for association study of GABRB2 with BPD, and its mRNA expression in postmortem BPD brains was examined using quantitative real-time PCR. Quantitative trait analysis was subsequently employed to assess the covariate effects of demographic and clinical characteristics on genotypic correlation of GABRB2 expression in SCZ and BPD.
Results:
Significant association of GABRB2 with BPD and reduction in GABRB2 mRNA expression in BPD brains were observed in the present study. Duration of illness (DOI) was found to be a significant covariate for the correlation of the disease-associated SNPs rs1816071, rs1816072 and rs187269 with GABRB2 expression in both SCZ and BPD. for individuals with homozygous major genotypes of these SNPs, while GABRB2 expression increased with age in the controls, it decreased with DOI and age in SCZ, and with DOI in BPD. with age of onset as covariate, these three SNPs were significantly correlated with antipsychotic dosage in SCZ.
Conclusion:
These results have thus revealed correlations of GABRB2 SNPs and expression not only with the occurrence of SCZ and BPD, but also with the clinical characteristics of patients, therefore providing support for a shared etiological role played by the gene in both diseases.
Bioinformatic investigations indicate that has-mir-206 (microRNA-206, miRNA-206) could regulate BDNF protein synthesis by interfering with BDNF mRNA translation, which is disrupted in bipolar disorder (BPD).
Objectives:
This study is to investigate whether miRNA-206 gene variants were associated with BPD susceptibility in a Han Chinese population.
Methods:
342 patients who met DSM-IV criteria for bipolar disorder type I (BPD-I) or type II (BPD-II) and 386 matched health controls were enrolled into this study. the miRNA-206 gene and +/-500bp were selected for gene sequencing. for the case-control genetic comparisons, differences in the genotype and allele distributions between patients and controls were examined using Pearson's χ2 test.
Results:
Gene sequencing showed that there are two polymorphisms rs16882131(C/T) and rs62408583 (A/C) located at the upstream of miRNA-206 gene, which are complete linkage disequilibrium. the association analysis showed that there was no significant difference for genotype frequencies (χ2 = 2.075, df = 2, P = 0.354) or for allele frequencies (χ2 = 0.041, df = 1, P = 0.839) between BPD patients and controls. Similarly, no significant difference was found between BPD-I patients and controls (genotype χ2 = 1.411, df = 2, P = 0.494; allele χ2 = 0.380, df = 1, P = 0.538). However, there was significant difference between BPD-II patients and controls (genotype χ2 = 7.933, df = 2, P = 0.019; allele χ2 = 5.403, df = 1, P = 0.020).
Conclusions:
Our findings do not support that BPD susceptibility was associated with miRNA-206 gene polymorphisms in the studied Han Chinese population. the association between miRNA-206 gene polymorphisms and bipolar disorder type II is needed to be carefully interpreted. Further studies are necessary to elucidate the involvement miRNA-206 in the pathophysiology of BPD.
Schizophrenia is a chronic psychiatry disorder with high heritability. Schizophrenic patients with early age at onset trend to have more genetic component and thus may be an attractive subpopulation for genetic studies. Brain-derived neurotrophimc factor (BDNF) is considered as candidate gene for schizophrenia. A single nucleotide polymorphism (BDNF Val66Met) was reported to be associated with schizophrenia, although discrepancy remains. The aim of this study was to evaluate the association between BDNF Val66Met polymorphism and schizophrenia using an early onset sample in Chinese Han population. Our sample consisted of 353 schizophrenic patients with onset before age 18 and 394 healthy age and sex matched controls. All subjects were ethnically homogenous Han Chinese origin. No significant differences of genotype or allele distribution were identified between the patients and controls. However, the Met allele was significantly associated with an earlier age at onset in male schizophrenic patients (Kaplan-Meier log-rank test P = 0.005), but not in females (P = 0.289). The BDNF Val66Met polymorphism has an important effect on the age at onset of schizophrenia in a gender-specific manner, and this may provided a significant genetic clue for the etiology of schizophrenia. Therefore, further studies are required to uncover the exact role of BDNF in the development of schizophrenia.
Increasing evidence indicates that major depressive disorder (MDD) is associated with cognitive as well as mood disturbances.
Objectives:
To evaluate cognitive function and white matter structure, resting-state brain function in first-episode, treatmentnaive patients with MDD.
Aims:
To explore brain structure and function mechanisms of cognitive impairment in MDD.
Methods:
46 Han Chinese MDD patients aged 18–45 year and 46 controls were assessed by a series of validated test procedures.Then, 30 patients and 30 controls were obtained by MRI scan.White matter abnormalities evaluated using diffusion tensor imaging (DTI) were analyzed using tract based spatial statistics (TBSS) and resting-state brain function was evaluated using regional homogeneity (ReHo) analysis.
Results:
Cognitive impairment in patients with MDD was demonstrated by reduced accuracy in the Wisconsin Card Sorting test (WSCT) and to a lesser extent the Continuous Performance test (CPT) and Trail Making tests (TMT). White matter abnormalities found in the left cerebellum, and resting-state abnormalities present in the left inferior parietal gyrus, left anterior cingulate nucleus and left hippocampal gyrus were associated with impaired performance in the WSCT and CPT tests. We also showed that poor WSCT performance was associated with increased interconnectivity between the left ventral anterior cingulate nucleus and the medial frontal lobe areas.
Conclusions:
The present study indicates cognitive disturbances in patients with MDD are associated with white matter and resting-state changes and altered interconnections in specific brain areas.
We investigated the relationship between tyrosine hydroxylase (TH) polymorphisms rs11042978, rs2070762 and rs6356 and early-onset schizophrenia in the Chinese Han population.
Subjects and methods
The tag single nucleotide polymorphisms (tag SNPs) rs11042978, rs2070762 and rs6356 in the TH gene were genotyped in 315 early-onset schizophrenics (188 male patients,127 female patients)and 391 controls subjects (219 males,172 females). Single nucleotide polymorphism association and haplotype analysis were performed.
Results
There were significant differences in allele and genotype frequencies between patients and normal control subjects for rs11042978 allele (χ2 = 4.47, df = 1, P = 0.034) and genotype (χ2 = 6.35, df = 2, P = 0.042). No statistically significant differences were found in allele or genotype between patients and normal control subjects for rs2070762 and rs6356. The haplotype analysis revealed that there were significant differences between patients and normal control subjects for haplotypes GAC (χ2 = 6.35, P = 0.012).
Conclusions
Our study indicates that the TH gene may play major roles in the susceptibility to early-onset schizophrenia in the Chinese population.