We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Nutrition intervention is an effective way to improve flesh qualities of fish. The effect of feed supplementation with glutamate (Glu) on flesh quality of gibel carp (Carassius gibelio) was investigated. In trial 1, the fish (initial weight: 37.49 ± 0.08 g) were fed two practical diets with 0 and 2% Glu supplementation. In trial 2, the fish (37.26 ± 0.04 g) were fed two purified diets with 0 and 3% Glu supplementation. The results after feeding trials showed that dietary Glu supplementation increased the hardness and springiness of muscle, whether using practical or purified diets. Glu-supplemented diets increased the thickness and density of myofibres and collagen content between myofibres. Furthermore, Glu promoted muscle protein deposition by regulating the IGF-1-AKT-mTOR signalling pathway, and enhanced the myofibre hypertrophy by upregulating genes related to myofibre growth and development (mef2a, mef2d, myod, myf5, mlc, tpi and pax7α). The protein deposition and myofibre hypertrophy in turn improved the flesh texture. In addition, IMP content in flesh increased when supplementing Glu whether to practical or to purified diet. Metabolomics confirmed that Glu promoted the deposition of muscle-flavoured substances and purine metabolic pathway most functioned, echoed by the upregulation of key genes (ampd, ppat and adsl) in purine metabolism. The sensory test also clarified that dietary Glu improved the flesh quality by enhancing the muscle texture and flavour. Conclusively, dietary Glu supplementation can improve the flesh quality in this fish, which can further support evidence from other studies more generally that improve flesh quality of cultured fish.
This research communication screened and identified differentiated expressed genes in bovine mammary epithelial cells (BMECs) upon prolactin (PRL) stimulation. PRL of 5 μg/ml increased β-casein synthesis in BMECs with milk protein synthesis capacity. RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs). A total of 375 DEGs (165 up-regulated and 210 down-regulated) were identified between PRL-stimulated group and the control group. Gene ontology enrichment analysis showed that the up-regulated genes were primarily associated with cell functions, metabolic processes, and biological regulatory processes. Pathway enrichment analysis showed that the up-regulated genes were mainly enriched in JAK-STAT, Rap1, Ras and Notch signaling pathways, which are widely involved in cell proliferation, differentiation and milk component synthesis. This study provides an initial understanding of the changes in gene expression in BMECs with PRL-stimulation, as determined by RNA-seq transcriptomic analysis, thereby enhancing our knowledge of the molecular regulation of lactation metabolism.
This study analyzed the impact of environmental regulation, specifically the “2+26” regional strategy for air quality improvement, on corporate research and development (R&D) investment in China. We developed a theoretical model based on the argument that R&D investment rises with regulation intensity. Using 2010–2019 data from China's listed companies located in the Beijing-Tianjin-Hebei region and its surrounding areas, we treated the $2+26$ policy as a quasi-natural experiment and adopted a difference-in-differences approach to explore its effect on firm R&D input. A positive association was observed between firm R&D intensity and the $2+26$ strategy's implementation in major polluting industries. Our results provide in-depth insights into the $2+26$ strategy's economic consequences, which are potentially of interest to both scholars and policymakers.
Head-up tilt test (HUTT) is an important tool in the diagnosis of pediatric vasovagal syncope. This research will explore the relationship between syncopal symptoms and HUTT modes in pediatric vasovagal syncope.
Methods:
A retrospective analysis was performed on the clinical data of 2513 children aged 3–18 years, who were diagnosed with vasovagal syncope, from Jan. 2001 to Dec. 2021 due to unexplained syncope or pre-syncope. The average age was 11.76 ± 2.83 years, including 1124 males and 1389 females. The patients were divided into the basic head-up tilt test (BHUT) group (596 patients) and the sublingual nitroglycerine head-up tilt test (SNHUT) group (1917 patients) according to the mode of positive HUTT at the time of confirmed pediatric vasovagal syncope.
Results:
(1) Baseline characteristics: Age, height, weight, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and composition ratio of syncope at baseline status were higher in the BHUT group than in the SNHUT group (all P < 0.05). (2) Univariate analysis: Age, height, weight, HR, SBP, DBP, and syncope were potential risk factors for BHUT positive (all P < 0.05). (3) Multivariate analysis: syncope was an independent risk factor for BHUT positive, with a probability increase of 121% compared to pre-syncope (P<0.001).
Conclusion:
The probability of BHUT positivity was significantly higher than SNHUT in pediatric vasovagal syncope with previous syncopal episodes.
In large-scale galaxy surveys, particularly deep ground-based photometric studies, galaxy blending was inevitable. Such blending posed a potential primary systematic uncertainty for upcoming surveys. Current deblenders predominantly depended on analytical modelling of galaxy profiles, facing limitations due to inflexible and imprecise models. We presented a novel approach, using a U-net structured transformer-based network for deblending astronomical images, which we term the CAT-deblender. It was trained using both RGB and the grz-band images, spanning two distinct data formats present in the Dark Energy Camera Legacy Survey (DECaLS) database, including galaxies with diverse morphologies in the training dataset. Our method necessitated only the approximate central coordinates of each target galaxy, sourced from galaxy detection, bypassing assumptions on neighbouring source counts. Post-deblending, our RGB images retained a high signal-to-noise peak, consistently showing superior structural similarity against ground truth. For multi-band images, the ellipticity of central galaxies and median reconstruction error for r-band consistently lie within $\pm$0.025 to $\pm$0.25, revealing minimal pixel residuals. In our comparison of deblending capabilities focused on flux recovery, our model showed a mere 1% error in magnitude recovery for quadruply blended galaxies, significantly outperforming SExtractor’s higher error rate of 4.8%. Furthermore, by cross-matching with the publicly accessible overlapping galaxy catalogs from the DECaLS database, we successfully deblended 433 overlapping galaxies. Moreover, we have demonstrated effective deblending of 63 733 blended galaxy images, randomly chosen from the DECaLS database.
Dyes are toxic and considered to be extremely hazardous to natural environments. Hence, adsorbents to remove dyes from contaminated water are needed. To develop adsorbents with a high adsorption capacity for different dyes, easy separation, and low cost, a novel dye adsorbent was prepared by activating fly ash with NaOH. The adsorbent morphology, structure, and specific surface area were characterized using scanning electron microscopy, X-ray powder diffraction, and surface area measurements using N2 adsorption-desorption. The adsorption abilities of the synthesized adsorbents were examined based on methylene blue and acid fuchsin adsorption from water. The capabilities of the adsorbents as a function of adsorbent use, dye type, dye concentration, time, and pH were investigated and compared. The results for methylene blue and acid fuchsin adsorption were modeled using pseudo-second order kinetics and the Langmuir adsorption isotherm, respectively. These modified adsorbents synthesized from fly ash may provide a promising solution to purify dye-contaminated waste water with the advantages of high efficiency and low cost.
Factors influencing excessive antimicrobial utilization in hospitalized patients remain poorly understood, particularly with the COVID-19 pandemic.
Methods:
In this retrospective cohort, we compared administrative data regarding antimicrobial prescriptions in hospitalized patients in South Carolina from March 2020 through September 2022. The study examined variables associated with antimicrobial use across demographics, COVID status, and length of stay, among other variables.
Results:
Significant relationships were seen with antimicrobial use in COVID-19 positive patients (OR 2.00, 95% Confidence Interval (CI): 1.9–2.1), young adults (OR 1.08, 95% CI: 0.99–1.12, COVID-19 positive Blacks and Hispanics (OR 1.06, 95% CI: 1.01–1.11, OR 1.05, 95% CI: 0.89–1.23), and COVID-19 positive patients with ≥2 comorbid conditions (OR 1.55, 95% CI: 1.43–1.68).
Discussion:
Further analysis in more than one healthcare system should explore these ecologic relationships further to understand if these are common trends to inform ongoing stewardship interventions.
A dual-band angular-stable transmissive linear to circular polarization converter based on metasurface is proposed and demonstrated in this work. The converter consists of three layers. The top and bottom layers are formed by an array of double split-ring layers. The unit cell of the central layer contains a square loop nesting a slant dipole. The split-rings create two resonances, enabling dual-band operation. The slant dipole and square loop are useful for improving the quality of circular polarization conversion. It is shown that the proposed polarization converter converts the incident linearly polarized wave into circularly polarized wave with opposite polarization modes over the frequency ranges of 8.77–10.58 and 17.59–19.88 GHz. The angular stability is up to 60° for 3 dB axial ratio. Moreover, the thickness of unit cell has a wavelength below 0.06 at the lower band. Compared with other designs in the literature, the structure bears merits of wideband response, high angular stability, and low-profile property within dual-band operational region. To validate the design, a sample prototype was designed, fabricated, and measured. The measured results are in good agreement with the simulated ones.
Many studies suggest that both psychotherapy and drug therapy are effective in the treatment of bipolar disorders (BDs). However, the pathophysiology of both types of intervention has not been established definitively.
Methods
An activation likelihood estimation meta-analysis was performed to identify the distinct brain activity alterations between psychotherapy and drug therapy for the treatment of BDs. Articles were identified by searching databases including PubMed, Embase, Cochrane Library, and Web of Science databases. Eligible studies on BDs were published up until 10 June 2021.
Results
21 studies were included and we conducted a meta-analysis for different therapies and imaging tasks. After receiving psychotherapy, BD patients showed increased activation in the inferior frontal gyrus (IFG) and superior temporal gyrus. While after taking drug therapy, BD patients displayed increased activation in the anterior cingulate cortex, medial frontal gyrus, IFG, and decreased activation in the posterior cingulate cortex. The regions of brain activity changes caused by psychotherapy were mostly focused on the frontal areas, while drug therapy mainly impacted on the limbic areas. Different type of tasks also affected brain regions which were activated.
Conclusions
Our comprehensive meta-analysis indicates that these two treatments might have effect on BD in their own therapeutic modes. Psychotherapy might have a top-down effect, while drug therapy might have a bottom-up effect. This study may contribute to differential diagnosis of BDs and would be helpful to finding more accurate neuroimaging biomarkers for BD treatment.
This paper presents a multi-band rectangular slot antenna, which can be used in Beidou navigation system, 4G, WLAN and 5G system. The proposed antenna adopts a single feeding line, generating circular polarization for satellite navigation, and linear polarization for mobile communication systems. The proposed antenna consists of three c-type resonators and three rectangular loop slots. A c-type resonator and a rectangular loop slot work together to produce a usable frequency band. Multiple frequency bands can be generated by increasing the number of c-type resonator and rectangular loop slots. It is found that the c-type resonator changes the current distribution on the antenna surface, making the axial ratio less than 3 dB in the low frequency bands. Eventually, five operation frequency bands are realized. Experimentally, it is verified that the impedance bandwidths of each frequency band are 11.8% (1.12–1.26 GHz), 15.4% (1.5–1.75 GHz), 11.9% (2.36–2.66 GHz), 19.7% (3.15–3.84 GHz) and 2.6% (4.47–4.59 GHz), respectively. The measured 3 dB axial ratio bandwidths are 20 MHz at 1.2 and 1.56 GHz, fully covering BDS B1 and B2 bands. The measured gains are 3, 3.59, 4.07, 4.2 and 4.35 dBi, respectively.
This research communication investigated the role and the underlying mechanism of sn-1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT6) in acetate-induced mTORC1 signaling activation and milk fat synthesis in dairy cow mammary epithelial cells. The data showed AGPAT6 knockdown significantly decreased acetate-induced phosphorylation of mTORC1 signaling molecules and intracellular triacylglycerol (TAG) content, whereas this inhibition effect was reversed after the addition of 16:0,18:1 phosphatidic acid (PA), suggesting that AGPAT6 could generate PA in response to acetate simulation, that in turn activates mTORC1 signaling. PPARγ is the upstream regulator of AGPAT6 upon acetate stimulation. Luciferase assay with clones containing various deletions and mutation in AGPAT6 promoter showed that there is a RXRα binding sequence located at −96 bp of AGPAT6 promoter. Acetate stimulation significantly increased the interaction between PPARγ and AGPAT6 via this RXRα binding site. Taken together, our data indicated that AGPAT6 could activate mTORC1 signaling by producing PA during acetate-induced milk fat synthesis, and PPARγ acts as a transcription factor to mediate the effect of acetate on AGPAT6 via RXRα.
Power scaling based on traditional ytterbium-doped fibers (YDFs) is limited by optical nonlinear effects and transverse mode instability (TMI) in high-power fiber lasers. Here, we propose a novel long tapered fiber with a constant cladding and tapered core (CCTC) along its axis direction. The tapered-core region of the fiber is designed to enhance the stimulated Raman scattering (SRS) threshold and suppress higher-order mode resonance in the laser cavity. The CCTC YDF was fabricated successfully with a modified chemical vapor deposition (MCVD) method combined with solution doping technology, which has a cladding diameter of 400 μm and a varying core with a diameter of ~24 μm at both ends and ~31 μm in the middle. To test the performance of the CCTC fiber during high-power operation, an all-fiber laser oscillator based on a CCTC YDF was investigated experimentally. As a result, a maximum output power of 3.42 kW was achieved with an optical-to-optical efficiency of 55.2%, although the TMI effect was observed at an output power of ~3.12 kW. The measured beam quality (M2 factor) was ~1.7, and no sign of the Raman component was observed in the spectrum. We believe that CCTC YDF has great potential to simultaneously mitigate the SRS and TMI effects, and further power scaling is promising by optimizing the structure of the YDF.
Shifts in the maternal gut microbiota have been implicated in the development of gestational diabetes mellitus (GDM). Understanding the interaction between gut microbiota and host glucose metabolism will provide a new target of prediction and treatment. In this nested case-control study, we aimed to investigate the causal effects of gut microbiota from GDM patients on the glucose metabolism of germ-free (GF) mice. Stool and peripheral blood samples, as well as clinical information, were collected from 45 GDM patients and 45 healthy controls (matched by age and prepregnancy body mass index (BMI)) in the first and second trimester. Gut microbiota profiles were explored by next-generation sequencing of the 16S rRNA gene, and inflammatory factors in peripheral blood were analyzed by enzyme-linked immunosorbent assay. Fecal samples from GDM and non-GDM donors were transferred to GF mice. The gut microbiota of women with GDM showed reduced richness, specifically decreased Bacteroides and Akkermansia, as well as increased Faecalibacterium. The relative abundance of Akkermansia was negatively associated with blood glucose levels, and the relative abundance of Faecalibacterium was positively related to inflammatory factor concentrations. The transfer of fecal microbiota from GDM and non-GDM donors to GF mice resulted in different gut microbiota colonization patterns, and hyperglycemia was induced in mice that received GDM donor microbiota. These results suggested that the shifting pattern of gut microbiota in GDM patients contributed to disease pathogenesis.
In this paper, we report the recent progress on the $1~\text{PW}/0.1~\text{Hz}$ laser beamline of Shanghai Superintense Ultrafast Laser Facility (SULF). The SULF-1 PW laser beamline is based on the double chirped pulse amplification (CPA) scheme, which can generate laser pulses of 50.8 J at 0.1 Hz after the final amplifier; the shot-to-shot energy fluctuation of the amplified pulse is as low as 1.2% (std). After compression, the pulse duration of 29.6 fs is achieved, which can support a maximal peak power of 1 PW. The contrast ratio at $-80~\text{ps}$ before main pulse is measured to be $2.5\times 10^{-11}$. The focused peak intensity is improved by optimizing the angular dispersion in the grating compressor. The maximal focused peak intensity can reach $2.7\times 10^{19}~\text{W}/\text{cm}^{2}$ even with an $f/26.5$ off-axis parabolic mirror. The horizontal and vertical angular pointing fluctuations in 1 h are measured to be 1.89 and $2.45~\unicode[STIX]{x03BC}\text{rad}$, respectively. The moderate repetition rate and the good stability are desirable characteristics for laser–matter interactions. The SULF-1 PW laser beamline is now in the phase of commissioning, and preliminary experiments of particle acceleration and secondary radiation under 300–400 TW/0.1 Hz laser condition have been implemented. The progress on the experiments and the daily stable operation of the laser demonstrate the availability of the SULF-1 PW beamline.
The present work highlights the progress in the field of flexible thermoelectric generator (f-TEGs) fabricated by 3-D printing strategy on the typing paper substrate. In this study, printable thermoelectric paste was developed. The dimension of each planer thermoelectric element is 30mm*4mm with a thickness of 50 μm for P-type Bismuth Tellurium (Bi2Te3)-based/ poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) leg. A single thermoleg with this dimension can generate a voltage of 5.38 mV at a temperature difference of 70 K. The calculated Seebeck Coefficient of a single thermoleg is 76.86 μV/K. This work demonstrates that low-cost printing technology is promising for the fabrication of f-TEGs.
The purpose of this study was to develop a simple and economic method for the preparation of porous bioceramics with controllable macrostructure. Raw materials, including very small organic foam balls as the pore-creating reagent, wax (or paraffin) as the solvent, and oleic acid as the surface active agent, were selected along with bioactive materials such as β-TCP ceramic powder as the main component. The selected components were mixed into a slurry at 30–120ºC and shaped into a green body with a hot die-casting machine at 30–90ºC. The green body was then sintered and porous bioceramics were obtained. The main characteristics of porous bioceramics such as weight loss, compressive strength, connection and size of pores, percolation rate of water, apparent porosity and bulk density were measured. The results indicated that the apparent porosity and the specific surface area were large; the pores were connected in three dimensions and the compressive strength was >1.6 MPa. This study demonstrated that the methods used here are simple and effective in generating porous bioceramics with controllable macrostructures.
TiAlN, CrAlN films and alternate CrAlN/TiAlN multilayers with different repeated bilayer thickness ranging from 10 to 30 nm were prepared by reactive magnetron sputtering. The interface structures of the films were characterized using x-ray reflectometry method. The individual thickness of the repeated bilayers in multilayers and total thickness of the films are close to the nominal thickness and they are more accurate for thicker films. The interface roughness increases as the thickness of the repeated bilayer in mutilayers decreases. The scattering length density profiles of the films suggests that the chemical composition is more accurate for thicker films.
This article is to discuss the bilinear and linear immersed finite element (IFE) solutions generated from the algebraic multigrid solver for both stationary and moving interface problems. For the numerical methods based on finite difference formulation and a structured mesh independent of the interface, the stiffness matrix of the linear system is usually not symmetric positive-definite, which demands extra efforts to design efficient multigrid methods. On the other hand, the stiffness matrix arising from the IFE methods are naturally symmetric positive-definite. Hence the IFE-AMG algorithm is proposed to solve the linear systems of the bilinear and linear IFE methods for both stationary and moving interface problems. The numerical examples demonstrate the features of the proposed algorithms, including the optimal convergence in both L2 and semi-H1 norms of the IFE-AMG solutions, the high efficiency with proper choice of the components and parameters of AMG, the influence of the tolerance and the smoother type of AMG on the convergence of the IFE solutions for the interface problems, and the relationship between the cost and the moving interface location.
Surface-functionalized magnetic nanoparticles were prepared by a facile one-pot solvothermal method in ethylene glycol solution. Zeta value, size, and magnetic properties could be well tuned by introducing different functional group molecules. Characterizations, including transmission electronic microscopy, scanning electronic microscopy, thermogravimetric analysis, x-ray powder diffraction and vibrating sample magnetometer, and Fourier transform infrared spectrophotometer demonstrated the efficiency of this simple and general synthesis strategy. The hydrophilic magnetic nanoparticles with various surface functional groups and zeta values were evidenced as excellent candidates for bioseparation by extracting DNA molecules from a model mixture of cell fractures.